

Key Vocabulary

• extraneous solution, *p. 52*

 $\sin^2 x + \cos^2 x = 1$ Equation 1 $\sin x = 1$ Equation 2

trigonometric equations. To see the difference, consider the following:

Equation 1 is an identity because it is true for all real values of *x*. Equation 2, however, is true only for some values of *x*. When you find these values, you are solving the equation.

In Lesson 14.3, you verified trigonometric identities. In this lesson, you will solve

EXAMPLE 1 Solve a trigonometric equation

Solve 2 sin $x - \sqrt{3} = 0$.

Solution

First isolate sin *x* on one side of the equation.

$$2 \sin x - \sqrt{3} = 0$$
 Write original equation.

$$2 \sin x = \sqrt{3}$$
 Add $\sqrt{3}$ to each side.

$$\sin x = \frac{\sqrt{3}}{2}$$
 Divide each side by 2.

One solution of $\sin x = \frac{\sqrt{3}}{2}$ in the interval $0 \le x < 2\pi$ is $x = \sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$. The other solution in the interval is $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$. Moreover, because $y = \sin x$ is periodic, there will be infinitely many solutions.

You can use the two solutions found above to write the general solution:

 $x = \frac{\pi}{3} + 2n\pi$ or $x = \frac{2\pi}{3} + 2n\pi$ (where *n* is any integer)

SOLUTION To write the general solution of a trigonometric equation, you can add multiples of the period to all the solutions from one cycle.

WRITE GENERAL

