14.4 Solve Trigonometric Equations

Key Vocabulary

- extraneous solution, p. 52

In Lesson 14.3, you verified trigonometric identities. In this lesson, you will solve trigonometric equations. To see the difference, consider the following:

$$
\begin{array}{rlrl}
\sin ^{2} x+\cos ^{2} x & =1 & \text { Equation } 1 \\
\sin x & =1 & & \text { Equation } 2
\end{array}
$$

Equation 1 is an identity because it is true for all real values of x. Equation 2, however, is true only for some values of x. When you find these values, you are solving the equation.

EXAMPLE 1 Solve a trigonometric equation

Solve $2 \sin x-\sqrt{3}=0$.

Solution

First isolate $\sin x$ on one side of the equation.

$$
\begin{aligned}
2 \sin x-\sqrt{3} & =0 & & \text { Write original equation. } \\
2 \sin x & =\sqrt{3} & & \text { Add } \sqrt{3} \text { to each side. } \\
\sin x & =\frac{\sqrt{3}}{2} & & \text { Divide each side by } 2 .
\end{aligned}
$$

One solution of $\sin x=\frac{\sqrt{3}}{2}$ in the interval $0 \leq x<2 \pi$ is $x=\sin ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{3}$. The other solution in the interval is $x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$. Moreover, because $y=\sin x$ is periodic, there will be infinitely many solutions.

WRITE GENERAL

 SOLUTIONTo write the general solution of a trigonometric equation, you can add multiples of the period to all the solutions from one cycle.

You can use the two solutions found above to write the general solution:

$$
x=\frac{\pi}{3}+2 n \pi \quad \text { or } \quad x=\frac{2 \pi}{3}+2 n \pi \quad \text { (where } n \text { is any integer) }
$$

CHECK You can check the answer by graphing $y=\sin x$ and $y=\frac{\sqrt{3}}{2}$ in the same coordinate plane. Then find the points where the graphs intersect. You can see that there are infinitely many such points.

