Problem Solving

EXAMPLE 6
on p. 927
for Exs. 39-41
39. RATE OF CHANGE In calculus, it can be shown that the rate of change of the function $f(x)=\sec x+\cos x$ is given by this expression:

$$
\sec x \tan x-\sin x
$$

Show that the expression for the rate of change can be written as $\sin x \tan ^{2} x$.
TEXAS @HomeTutor for problem solving help at classzone.com
40. PHYSICAL SCIENCE Static friction is the amount of force necessary to keep a stationary object on a flat surface from moving. Suppose a book weighing W pounds is lying on a ramp inclined at an angle θ. The coefficient of static friction u for the book can be found using this equation:

$$
u W \cos \theta=W \sin \theta
$$

a. Solve the equation for u and simplify the result.
b. Use the equation from part (a) to determine what happens to the value of u as the angle θ increases from 0° to 90°.

TEXAS @HomeTutor for problem solving help at classzone.com
41. MULTIIPLE REPRESENTATIONS The path of Halley's comet is an ellipse with the sun as a focus. The path can be estimated by the equation below, where r is the comet's distance (in astronomical units) from the sun and θ is the angle (in radians) between the horizontal major axis and the comet.

a. Writing an Equation Simplify the equation given above.
b. Drawing a Graph Use a graphing calculator to graph the equation from part (a).
c. Making a Table Make a table of values for the equation from part (a) in which θ starts at 0 and increases in increments of $\frac{\pi}{4}$. Use the table to approximate the closest and farthest distance, in miles, Halley's comet is from the sun. (Note: 1 astronomical unit ≈ 93 million miles.)
42. TAKS REASONING Use a reciprocal identity to describe what happens to the value of $\sec \theta$ as the value of $\cos \theta$ increases. On what intervals does this happen?
43. TAKS REASONING Use the tangent identity to describe what happens to the value of $\tan \theta$ as the value of $\sin \theta$ increases and the value of $\cos \theta$ decreases. On what intervals does this happen?

