EXAMPLE 6

Verify a real-life trigonometric identity

SHADOW LENGTH A vertical gnomon (the part of a sundial that projects a shadow) has height h. The length *s* of the shadow cast by the gnomon when the angle of the sun above the horizon is θ can be modeled by the equation below. Show that the equation is equivalent to $s = h \cot \theta$.

$$s = \frac{h \sin (90^\circ - \theta)}{\sin \theta}$$

Solution

Simplify the equation.

$$s = \frac{h\sin(90^\circ - \theta)}{\sin\theta}$$

Write original equation.

$$=\frac{h\sin\left(\frac{\pi}{2}-\theta\right)}{\sin\theta}$$

Convert 90° to radians.

$$= \frac{h\cos\theta}{\sin\theta}$$

Cofunction identity

$$= h \cot \theta$$

Cotangent identity

GUIDED PRACTICE

for Examples 4, 5, and 6

Verify the identity.

6.
$$\cot(-\theta) = -\cot\theta$$

8.
$$\cos x \csc x \tan x = 1$$

7.
$$\csc^2 x (1 - \sin^2 x) = \cot^2 x$$

9.
$$(\tan^2 x + 1)(\cos^2 x - 1) = -\tan^2 x$$

14.3 EXERCISES

HOMEWORK KEY

) = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 5, 11, and 41

= MULTIPLE REPRESENTATIONS Ex. 41

SKILL PRACTICE

- 1. **VOCABULARY** What is a trigonometric identity?
- What does the cofunction identity $\sin\left(\frac{\pi}{2} \theta\right) = \cos\theta$ tell you about the graphs of $y = \sin x$ and $y = \cos x$?

FINDING VALUES Find the values of the other five trigonometric functions of θ .

EXAMPLE 1

on p. 925 for Exs. 3-9

- **3.** $\sin \theta = \frac{1}{3}, \ 0 < \theta < \frac{\pi}{2}$ **4.** $\tan \theta = \frac{3}{7}, \ 0 < \theta < \frac{\pi}{2}$ **5.** $\cos \theta = \frac{5}{6}, \frac{3\pi}{2} < \theta < 2\pi$
- **6.** $\sin \theta = -\frac{7}{10}, \, \pi < \theta < \frac{3\pi}{2}$ **7.** $\cot \theta = -\frac{2}{5}, \, \frac{\pi}{2} < \theta < \pi$ **8.** $\sec \theta = -\frac{9}{4}, \, \frac{\pi}{2} < \theta < \pi$