14.3 a.2, 2A.2.A; Identities

 P.2.CYou graphed trigonometric functions.
You will verify trigonometric identities.

So you can model the path of Halley's comet, as in Ex. 41.

Key Vocabulary - trigonometric identity

Recall from Lesson 13.3 that if an angle θ is in standard position with its terminal side intersecting the unit circle at (x, y), then $x=\cos \theta$ and $y=\sin \theta$. Because (x, y) is on a circle centered at the origin with radius 1 , it follows that:

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\cos ^{2} \theta+\sin ^{2} \theta & =1
\end{aligned}
$$

The equation $\cos ^{2} \theta+\sin ^{2} \theta=1$ is true for any value of θ. A trigonometric equation that is true for all values of θ (in its domain) is called a trigonometric identity. Several fundamental trigonometric identities are listed below, some of which you have already learned.

KEY CONCEPT

Fundamental Trigonometric Identities

Reciprocal Identities

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

Tangent and Cotangent Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Cofunction Identities

$$
\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \quad \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \quad \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
$$

Negative Angle Identities

$$
\sin (-\theta)=-\sin \theta \quad \cos (-\theta)=\cos \theta \quad \tan (-\theta)=-\tan \theta
$$

You can use trigonometric identities to evaluate trigonometric functions, simplify trigonometric expressions, and verify other identities.

