14.3 Investigating Trigonometric Identities 4.3, a.5, 2A.2.A; P.2.C

MATERIALS • graphing calculator

QUESTION

How can you use a graphing calculator to verify trigonometric identities?

EXPLORE

Investigate a trigonometric identity

Determine whether the equation $\sin^2 x + \cos^2 x = 1$ is true for *no x-values*, some x-values, or all x-values.

STEP 1 Enter equations

Enter the left side of the equation as y_1 and the right side as y_2 . Use the "thick" graph style for y_2 to distinguish the graphs.

STEP 2 Set viewing window

Set your calculator in radian mode. Adjust the viewing window so that the *x*-axis shows $-2\pi \le x \le 2\pi$ and the v-axis shows $-2 \le v \le 2$.

STEP 3 Graph equations

Graph the equations. The calculator first graphs $y_1 = \sin^2 x + \cos^2 x$ and then $y_2 = 1$ as a thicker line over the graph of y_1 .

The graphs of each side of the equation $\sin^2 x + \cos^2 x = 1$ are the same. So, the equation is true for all *x*-values.

DRAW CONCLUSIONS Use your observations to complete these exercises

Use a graphing calculator to determine whether the equation is true for no x-values, some x-values, or all x-values. (Set your calculator in radian mode and use $-2\pi \le x \le 2\pi$ and $-2 \le y \le 2$ for the viewing window.)

1.
$$\tan x = \frac{\sin x}{\cos x}$$

$$2. \sin x = -\cos x$$

3.
$$\tan x = \frac{1}{x}$$

4.
$$\cos(-3x) = \cos 3x$$
 5. $\cos x = 1.5$

5.
$$\cos x = 1.5$$

6.
$$\sin (x - \pi) = \cos x$$

$$7. \sin(-x) = -\sin x$$

8.
$$\cos \frac{x}{2} = \frac{1}{2} \cos x$$

7.
$$\sin(-x) = -\sin x$$
 8. $\cos \frac{x}{2} = \frac{1}{2}\cos x$ **9.** $\cos(x - \frac{\pi}{2}) = \sin x$

10. **REASONING** Trigonometric equations that are true for *all* values of x (in their domain) are called trigonometric identities. Which trigonometric equations in Exercises 1-9 are trigonometric identities?