14.3 Investigating Trigonometric

MATERIALS•graphing calculator
QUESTION How can you use a graphing calculator to verify trigonometric identities?

EXPLORE Investigate a trigonometric identity

Determine whether the equation $\sin ^{2} x+\cos ^{2} x=1$ is true for $n o x$-values, some x-values, or all x-values.

STEP 1 Enter equations

Enter the left side of the equation as y_{1} and the right side as y_{2}. Use the "thick" graph style for y_{2} to distinguish the graphs.

```
\Y1目(sin(X))2+
( cos(X))2
lY2目1
\Y3=
\Y4=
\Y5=
\Y6=
```


STEP 2 Set viewing window

Set your calculator in radian mode. Adjust the viewing window so that the x-axis shows $-2 \pi \leq x \leq 2 \pi$ and the y-axis shows $-2 \leq y \leq 2$.

STEP 3 Graph equations Graph the equations. The calculator first graphs $y_{1}=\sin ^{2} x+\cos ^{2} x$ and then $y_{2}=1$ as a thicker line over the graph of y_{1}.

The graphs of each side of the equation $\sin ^{2} x+\cos ^{2} x=1$ are the same. So, the equation is true for all x-values.

DRAW CONCLUSIONS Use your observations to complete these exercises

Use a graphing calculator to determine whether the equation is true for no \boldsymbol{x}-values, some \boldsymbol{x}-values, or all x-values. (Set your calculator in radian mode and use $-2 \pi \leq x \leq 2 \pi$ and $-2 \leq y \leq 2$ for the viewing window.)

1. $\tan x=\frac{\sin x}{\cos x}$
2. $\sin x=-\cos x$
3. $\tan x=\frac{1}{x}$
4. $\cos (-3 x)=\cos 3 x$
5. $\cos x=1.5$
6. $\sin (x-\pi)=\cos x$
7. $\sin (-x)=-\sin x$
8. $\cos \frac{x}{2}=\frac{1}{2} \cos x$
9. $\cos \left(x-\frac{\pi}{2}\right)=\sin x$
10. REASONING Trigonometric equations that are true for all values of x (in their domain) are called trigonometric identities. Which trigonometric equations in Exercises 1-9 are trigonometric identities?
