54. TAKS REASONING In a particular region, the population C of coyotes (the predator) and the population R of rabbits (the prey) can be modeled by

$$
C=9000+3000 \sin \frac{\pi}{12} t \quad \text { and } \quad R=20,000+8000 \cos \frac{\pi}{12} t
$$

where t is the time in months.
a. Determine the ratio of rabbits to coyotes when $t=0,6,12$, and 18 months.
b. Graph both functions in the same coordinate plane.
c. Use the graphs to explain how the changes in the two populations appear to be related.
55. CHALLENGE Suppose a Ferris wheel has a radius of 25 feet and operates at a speed of 2 revolutions per minute. The bottom car is 5 feet above the ground. Write a model for a person's height h (in feet) above the ground if the value of h is 44 feet when $t=0$.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

56. TAKS PRACTICE The cylindrical tube shown is metal. It has an inner radius of 10 inches, an outer

REVIEW
Skills Review
Handbook p. 993;
TAKS Workbook radius of 12 inches, and a height of 23 inches. What is the approximate amount of metal needed to make this tube? TAKS Obj. 8
(A) 289 in. ${ }^{3}$
(B) 1012 in. ${ }^{3}$
(C) 3179 in. ${ }^{3}$
(D) 4625 in. 3

57. TAKS PRACTICE Lisa records the price of regular gasoline every Friday for four months. Which measure of data describes the most frequent price of gasoline over the four month period? TAKS Obj. 9
(F) Mean
(G) Median
(H) Mode
(J) Range

QUIZ for Lessons 14.1-14.2

Find the amplitude and the period of the graph of the function. (p. 908)

1. $y=\cos 4 x$
2. $y=\frac{3}{2} \sin 5 x$
3. $f(x)=\frac{1}{4} \sin x$
4. $y=\frac{1}{2} \cos 2 \pi x$
5. $y=\sin \pi x$
6. $g(x)=3 \cos \frac{\pi}{2} x$

Graph the function.

7. $y=4 \sin \pi x(p .908)$
8. $y=\frac{1}{2} \cos \frac{3}{2} \pi x(p .908)$
9. $g(x)=2 \tan \frac{1}{4} x(p .908)$
10. $f(x)=-2 \sin 3 x+4(p .915)$
11. $y=\cos (x+\pi)+2(p .915)$
12. $y=-\tan 2\left(x+\frac{\pi}{2}\right)($ p. 915 $)$
13. WINDOW WASHERS You are standing 70 feet from the base of a 250 foot building watching a window washer lower himself to the ground. Write and graph a model that gives the window washer's distance d (in feet) from the top of the building as a function of the angle of elevation θ. (p. 915)
