54. TAKS REASONING In a particular region, the population *C* of coyotes (the predator) and the population *R* of rabbits (the prey) can be modeled by

$$C = 9000 + 3000 \sin \frac{\pi}{12} t$$
 and $R = 20,000 + 8000 \cos \frac{\pi}{12} t$

where *t* is the time in months.

- **a.** Determine the ratio of rabbits to coyotes when t = 0, 6, 12, and 18 months.
- **b.** Graph both functions in the same coordinate plane.
- **c.** Use the graphs to explain how the changes in the two populations appear to be related.
- **55. CHALLENGE** Suppose a Ferris wheel has a radius of 25 feet and operates at a speed of 2 revolutions per minute. The bottom car is 5 feet above the ground. Write a model for a person's height h (in feet) above the ground if the value of h is 44 feet when t = 0.

QUIZ for Lessons 14.1–14.2

Find the amplitude and the period of the graph of the function. (p. 908)

$1. \ y = \cos 4x$	2. $y = \frac{3}{2} \sin 5x$	3. $f(x) = \frac{1}{4} \sin x$
4. $y = \frac{1}{2} \cos 2\pi x$	5. $y = \sin \pi x$	6. $g(x) = 3 \cos \frac{\pi}{2} x$
Graph the function.		
7. $y = 4 \sin \pi x$ (p. 908)	8. $y = \frac{1}{2} \cos \frac{3}{2} \pi x$ (p. 908)	9. $g(x) = 2 \tan \frac{1}{4} x$ (p. 908)
10. $f(x) = -2\sin 3x + 4$ (p. 915)	11. $y = \cos(x + \pi) + 2$ (p. 915)	12. $y = -\tan 2\left(x + \frac{\pi}{2}\right)$ (p. 915)
13. WINDOW WASHERS You are standing 70 feet from the base of a 250 foot building watching a window washer lower himself to the ground. Write and graph a model that gives the window washer's distance d (in feet) from the top of the building as a function of the angle of elevation θ . (<i>p.</i> 915)		

EXTRA PRACTICE for Lesson 14.2, p. 1023 **ONLINE QUIZ** at classzone.com