EXAMPLE 4 Graph an equation in standard form

ANOTHER WAY

You can also graph
$5 x+2 y=10$ by first solving for y to obtain $y=-\frac{5}{2} x+5$ and then using the procedure for graphing an equation in slope-intercept form.

Graph $5 x+2 y=10$.

Solution

STEP 1 The equation is already in standard form.
STEP 2 Identify the x-intercept.

$$
\begin{aligned}
5 x+2(0) & =10 & & \text { Let } y=0 . \\
x & =2 & & \text { Solve for } x .
\end{aligned}
$$

The x-intercept is 2 . So, plot the point $(2,0)$.
STEP 3 Identify the y-intercept.

$$
\begin{aligned}
5(0)+2 y & =10 & & \text { Let } x=0 . \\
y & =5 & & \text { Solve for } y .
\end{aligned}
$$

The y-intercept is 5 . So, plot the point $(0,5)$.
STEP 4 Draw a line through the two points.

HORIZONTAL AND VERTICAL LINES The equation of a vertical line cannot be written in slope-intercept form because the slope is not defined. However, every linear equation-even that of a vertical line-can be written in standard form.

KEY CONCEPT

Horizontal and Vertical Lines

Horizontal Lines The graph of $y=c$ is the horizontal line through $(0, c)$.
Vertical Lines The graph of $x=c$ is the vertical line through $(c, 0)$.

EXAMPLE 5 Graph horizontal and vertical lines

Graph (a) $y=2$ and (b) $x=-3$.

Solution

a. The graph of $y=2$ is the horizontal line that passes through the point $(0,2)$. Notice that every point on the line has a y-coordinate of 2 .
b. The graph of $x=-3$ is the vertical line that passes through the point $(-3,0)$. Notice that every point on the line has an x-coordinate of -3 .

\section*{| | GUIDED PRACTICE |
| :--- | :--- |
| | Graph the equation. |}

11. $2 x+5 y=10$
12. $3 x-2 y=12$
13. $x=1$
14. $y=-4$
