TANGENT FUNCTIONS Graphing tangent functions using translations and reflections is similar to graphing sine and cosine functions.

EXAMPLE 5 Combine a translation and a reflection

Graph $y=-3 \tan x+5$.

Solution

STEP 1 Identify the period, horizontal shift, and vertical shift.
Period: $\boldsymbol{\pi} \quad$ Horizontal shift: $h=0 \quad$ Vertical shift: $\boldsymbol{k}=\mathbf{5}$
STEP 2 Draw the midline of the graph, $y=5$.
FIND ASYMPTOTES
Notice that the asymptotes are not shifted. This is because there is no horizontal shift.

STEP 3 Find the asymptotes and key points of $y=|-3| \tan x+5$.
Asymptotes: $x=-\frac{\pi}{2 \cdot 1}=-\frac{\pi}{2} ; x=\frac{\pi}{2 \cdot 1}=\frac{\pi}{2}$
On $\boldsymbol{y}=\boldsymbol{k}:(0,0+5)=(0,5)$
Halfway points: $\left(-\frac{\pi}{4},-3+5\right)=\left(-\frac{\pi}{4}, 2\right) ;\left(\frac{\pi}{4}, 3+5\right)=\left(\frac{\pi}{4}, 8\right)$
STEP 4 Reflect the graph. Because $a<0$, the graph is reflected in the midline $y=5$. So, $\left(-\frac{\pi}{4}, 2\right)$ becomes $\left(-\frac{\pi}{4}, 8\right)$ and $\left(\frac{\pi}{4}, 8\right)$ becomes $\left(\frac{\pi}{4}, 2\right)$.
STEP 5 Draw the graph through the key points.

EXAMPLE 6 Model with a tangent function

GLASS ELEVATOR You are standing 120 feet from the base of a 260 foot building. You watch your friend go down the side of the building in a glass elevator. Write and graph a model that gives your friend's distance d (in feet) from the top of the building as a function of the angle of elevation θ.

Solution

Use a tangent function to write an equation relating d and θ.

$$
\begin{aligned}
\tan \theta=\frac{\text { opp }}{\text { adj }} & =\frac{260-d}{120} \\
120 \tan \theta & =260-d \\
120 \tan \theta-260 & =-d \\
-120 \tan \theta+260 & =d
\end{aligned}
$$

$$
-120 \tan 0+200-0
$$

The graph of $d=-120 \tan \theta+260$ is shown at the right.

Angle (degrees)

