TANGENT FUNCTIONS Graphing tangent functions using translations and reflections is similar to graphing sine and cosine functions.

EXAMPLE 5 Combine a translation and a reflection

Graph $y = -3 \tan x + 5$.

Solution

- *step 1* Identify the period, horizontal shift, and vertical shift.
 - Period: π Horizontal shift: h = 0 Vertical shift: k = 5
- **STEP 2** Draw the midline of the graph, y = 5.
- *STEP 3* Find the asymptotes and key points of $y = |-3| \tan x + 5$.

Asymptotes: $x = -\frac{\pi}{2 \cdot 1} = -\frac{\pi}{2}$; $x = \frac{\pi}{2 \cdot 1} = \frac{\pi}{2}$

On y = k: (0, 0 + 5) = (0, 5)

Halfway points: $\left(-\frac{\pi}{4}, -3 + 5\right) = \left(-\frac{\pi}{4}, 2\right); \left(\frac{\pi}{4}, 3 + 5\right) = \left(\frac{\pi}{4}, 8\right)$

STEP 4 **Reflect** the graph. Because *a* < 0, the graph is reflected in the midline

$$y = 5$$
. So, $\left(-\frac{\pi}{4}, 2\right)$ becomes $\left(-\frac{\pi}{4}, 8\right)$

and $\left(\frac{\pi}{4}, 8\right)$ becomes $\left(\frac{\pi}{4}, 2\right)$.

STEP 5 **Draw** the graph through the key points.

EXAMPLE 6 Model with a tangent function

GLASS ELEVATOR You are standing 120 feet from the base of a 260 foot building. You watch your friend go down the side of the building in a glass elevator. Write and graph a model that gives your friend's distance d (in feet) from the top of the building as a function of the angle of elevation θ .

Solution

Use a tangent function to write an equation relating *d* and θ .

 $\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{260 - d}{120}$ Definition of tangent 120 tan $\theta = 260 - d$ Multiply each side by 120. 120 tan $\theta - 260 = -d$ Subtract 260 from each side. -120 tan $\theta + 260 = d$ Solve for *d*. The graph of d = -120 tan $\theta + 260$ is shown at the right.

FIND ASYMPTOTES

Notice that the asymptotes are not shifted. This is because there is no horizontal shift.