EXAMPLE 2 Graph a horizontal translation

Graph $y=5 \cos 2(x-3 \pi)$.

Solution

STEP 1 Identify the amplitude, period, horizontal shift, and vertical shift.
Amplitude: $a=5 \quad$ Horizontal shift: $\boldsymbol{h}=3 \pi$
Period: $\frac{2 \pi}{b}=\frac{2 \pi}{2}=\pi \quad$ Vertical shift: $k=0$
STEP 2 Draw the midline of the graph. Because $k=0$, the midline is the x-axis.

FIND KEY POINTS
Because the graph is shifted to the right 3π units, the x-coordinates of the five key points will be increased by 3π.

Find the five key points.
On $y=k:\left(\frac{\pi}{4}+3 \pi, 0\right)=\left(\frac{13 \pi}{4}, 0\right)$;
$\left(\frac{3 \pi}{4}+3 \pi, 0\right)=\left(\frac{15 \pi}{4}, 0\right)$
Maximums: $(0+3 \pi, 5)=(3 \pi, 5)$;
$(\pi+3 \pi, 5)=(4 \pi, 5)$
Minimum: $\left(\frac{\pi}{2}+3 \pi,-5\right)=\left(\frac{7 \pi}{2},-5\right)$
STEP 4 Draw the graph through the key points.

EXAMPLE 3 Graph a model for circular motion

FERRIS WHEEL Suppose you are riding a Ferris wheel that turns for 180 seconds. Your height h (in feet) above the ground at any time t (in seconds) can be modeled by the equation $h=85 \sin \frac{\pi}{20}(t-10)+90$.
a. Graph your height above the ground as a function of time.
b. What are your maximum and minimum heights?

Solution

a. The amplitude is 85 and the period is $\frac{2 \pi}{\frac{\pi}{20}}=40$. The wheel turns $\frac{180}{40}=4.5$ times in 180 seconds, so the graph below shows 4.5 cycles.

The five key points are (10, 90), (20, 175), (30, 90), (40, 5), and (50, 90).

b. Your maximum height is $90+85=175$ feet and your minimum height is $90-85=5$ feet.

