# EXAMPLE 2 Graph a horizontal translation

Graph  $y = 5 \cos 2(x - 3\pi)$ .

## Solution

*STEP 1* Identify the amplitude, period, horizontal shift, and vertical shift.

Amplitude: a = 5

Period:  $\frac{2\pi}{h} = \frac{2\pi}{2} = \pi$  Vertical shift: k = 0

*STEP 2* **Draw** the midline of the graph. Because k = 0, the midline is the *x*-axis.

Horizontal shift:  $h = 3\pi$ 

*STEP 3* Find the five key points.

On y = k:  $\left(\frac{\pi}{4} + 3\pi, 0\right) = \left(\frac{13\pi}{4}, 0\right);$  $\left(\frac{3\pi}{4} + 3\pi, 0\right) = \left(\frac{15\pi}{4}, 0\right)$ 

**Maximums:**  $(0 + 3\pi, 5) = (3\pi, 5);$  $(\pi + 3\pi, 5) = (4\pi, 5)$ 

**Minimum:**  $\left(\frac{\pi}{2} + 3\pi, -5\right) = \left(\frac{7\pi}{2}, -5\right)$ 



*STEP 4* **Draw** the graph through the key points.

## EXAMPLE 3 Graph a model for circular motion

**FERRIS WHEEL** Suppose you are riding a Ferris wheel that turns for 180 seconds. Your height *h* (in feet) above the ground at any time *t* (in seconds) can be modeled by the equation  $h = 85 \sin \frac{\pi}{20}(t - 10) + 90$ .

- a. Graph your height above the ground as a function of time.
- b. What are your maximum and minimum heights?

#### Solution

**a.** The amplitude is 85 and the period is  $\frac{2\pi}{\frac{\pi}{20}} = 40$ . The wheel turns

 $\frac{180}{40}$  = 4.5 times in 180 seconds, so the graph below shows 4.5 cycles.

The five key points are (10, 90), (20, 175), (30, 90), (40, 5), and (50, 90).



**b.** Your maximum height is 90 + 85 = 175 feet and your minimum height is 90 - 85 = 5 feet.

### FIND KEY POINTS Because the graph is

shifted to the right  $3\pi$ units, the *x*-coordinates of the five key points will be increased by  $3\pi$ .