31. TAKS REASONING A buoy oscillates up and down as waves go past. The buoy moves a total of 3.5 feet from its low point to its high point, and then returns to its high point every 6 seconds.
a. Write an equation that gives the buoy's vertical position y at time t if the buoy is at its highest point when $t=0$.
b. Explain why you chose $y=a \sin b t$ or $y=a \cos b t$ for part (a).
32.

MULTIPLE REPRESENTATIONS You are standing on a bridge, 140 feet above the ground. You look down at a car traveling away from the underpass.

a. Writing an Equation Write an equation that gives the car's distance d from the base of the bridge as a function of the angle θ.
b. Drawing a Graph Graph the function found in part (a). Explain how the graph relates to the given situation.
c. Making a Table Make a table of values for the function. Use the table to find the car's distance from the bridge when $\theta=20^{\circ}, 40^{\circ}$, and 60°.
33. CHALLENGE The motion of a spring can be modeled by $y=A \cos k t$ where y is the spring's vertical displacement (in feet) relative to its position at rest, A is the initial displacement (in feet), k is a constant that measures the elasticity of the spring, and t is the time (in seconds).
a. Suppose you have a spring whose motion can be modeled by the function $y=0.2 \cos 6 t$. Find the initial displacement and the period of the spring. Then graph the given function.
b. Graphing Calculator If a damping force is applied to the spring, the motion of the spring can be modeled by the function $y=0.2 e^{-4.5 t} \cos 4 t$. Graph this function. What effect does damping have on the motion?

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW
Lesson 13.1;
TAKS Workbook

REVIEW

Lesson 9.1;
TAKS Workbook
34. TAKS PRACTICE What is the area of $\triangle M N P$? TAKS Obj. 6
(A) 36 in. ${ }^{2}$
(B) 72 in. ${ }^{2}$
(C) 109 in. ${ }^{2}$
(D) 144 in. ${ }^{2}$

35. TAKS PRACTICE The length of $\overline{S T}$ is $7 \sqrt{5}$ and the coordinates of its endpoints are $(x,-10)$ and $(-8,4)$. What are the possible values of x ? TAKS Obj. 7
(F) -15
(G) 1
(H) $-15,-1$
(J) $15,-1$

