Graph the function.

5. $y=\frac{1}{4} \sin \pi x$
6. $y=\frac{1}{3} \cos \pi x$
7. $f(x)=2 \sin 3 x$
8. $g(x)=3 \cos 4 x$
9. WHAT IF? In Example 3, how would the function change if the audiometer produced a pure tone with a frequency of 1000 hertz?

GRAPH OF $\boldsymbol{Y}=$ TAN \boldsymbol{X} The graphs of all tangent functions are related to the graph of the parent function $y=\tan x$, which is shown below.

FIND ODD MULTIPLES Odd multiples of $\frac{\pi}{2}$ are values such as these:

$$
\begin{aligned}
& \pm 1 \cdot \frac{\pi}{2}= \pm \frac{\pi}{2} \\
& \pm 3 \cdot \frac{\pi}{2}= \pm \frac{3 \pi}{2} \\
& \pm 5 \cdot \frac{\pi}{2}= \pm \frac{5 \pi}{2}
\end{aligned}
$$

The function $y=\tan x$ has the following characteristics:

1. The domain is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
2. The range is all real numbers. So, the function $y=\tan x$ does not have a maximum or minimum value, and therefore the graph of $y=\tan x$ does not have an amplitude.
3. The graph has a period of π.
4. The x-intercepts of the graph occur when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$.

KEY CONCEPT

For Your Notebook

Characteristics of $\boldsymbol{y}=\boldsymbol{a}$ tan $\boldsymbol{b x}$

The period and vertical asymptotes of the graph of $y=a \tan b x$, where a and b are nonzero real numbers, are as follows:

- The period is $\frac{\pi}{|b|}$.
- The vertical asymptotes are at odd multiples of $\frac{\pi}{2|b|}$.

GRAPHING KEY POINTS The graph at the right shows five key x-values that can help you sketch the graph of $y=a \tan b x$ for $a>0$ and $b>0$. These are the x-intercept, the x-values where the asymptotes occur, and the x-values halfway between the x-intercept and the asymptotes. At each halfway point, the function's value is either a or $-a$.

