GUIDED PRACTICE for Examples 2 and 3

Graph the function.

5.
$$y = \frac{1}{4}\sin \pi x$$
 6. $y = \frac{1}{3}\cos \pi x$ **7.** $f(x) = 2\sin 3x$ **8.** $g(x) = 3\cos 4x$

9. WHAT IF? In Example 3, how would the function change if the audiometer produced a pure tone with a frequency of 1000 hertz?

GRAPH OF *Y* **= TAN** *X* The graphs of all tangent functions are related to the graph of the parent function $y = \tan x$, which is shown below.

FIND ODD

The function $y = \tan x$ has the following characteristics:

- 1. The domain is all real numbers except odd multiples of $\frac{\pi}{2}$. At these *x*-values, the graph has vertical asymptotes.
 - **2.** The range is all real numbers. So, the function $y = \tan x$ does not have a maximum or minimum value, and therefore the graph of $y = \tan x$ does not have an amplitude.
 - **3.** The graph has a period of π .
 - **4.** The *x*-intercepts of the graph occur when $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \ldots$

KEY CONCEPT

Characteristics of $y = a \tan bx$

The period and vertical asymptotes of the graph of $y = a \tan bx$, where *a* and *b* are nonzero real numbers, are as follows:

- The period is $\frac{\pi}{|b|}$.
- The vertical asymptotes are at odd multiples of $\frac{\pi}{2|b|}$.

INTS The graph at the right shows five key *x*-values that can help you sketch the graph of $y = a \tan bx$ for a > 0 and b > 0. These are the *x*-intercept, the *x*-values where the **asymptotes** occur, and the *x*-values **halfway between** the *x*-intercept and the asymptotes. At each halfway point, the function's value is either *a* or *-a*.

For Your Notebook

MULTIPLES Odd multiples of $\frac{\pi}{2}$ are values such as these: $\pm 1 \cdot \frac{\pi}{2} = \pm \frac{\pi}{2}$ $\pm 3 \cdot \frac{\pi}{2} = \pm \frac{3\pi}{2}$ $\pm 5 \cdot \frac{\pi}{2} = \pm \frac{5\pi}{2}$