EXAMPLE 2 Graph a cosine function

Graph $y=\frac{1}{2} \cos 2 \pi x$.

SKETCH A GRAPH

After you have drawn one complete cycle of the graph in Example 2 on the interval $0 \leq x \leq 1$, you can extend the graph by copying the cycle as many times as desired to the left and right of $0 \leq x \leq 1$.

Solution

The amplitude is $a=\frac{1}{2}$ and the period is $\frac{2 \pi}{b}=\frac{2 \pi}{2 \pi}=1$.
Intercepts: $\left(\frac{1}{4} \cdot 1,0\right)=\left(\frac{1}{4}, 0\right)$;

$$
\left(\frac{3}{4} \cdot 1,0\right)=\left(\frac{3}{4}, 0\right)
$$

Maximums: $\left(0, \frac{1}{2}\right) ;\left(1, \frac{1}{2}\right)$
Minimum: $\left(\frac{1}{2} \cdot 1,-\frac{1}{2}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$

MODELING WITH TRIGONOMETRIC FUNCTIONS The periodic nature of trigonometric functions is useful for modeling oscillating motions or repeating patterns that occur in real life. Some examples are sound waves, the motion of a pendulum, and seasons of the year. In such applications, the reciprocal of the period is called the frequency, which gives the number of cycles per unit of time.

EXAMPLE 3 Model with a sine function

AUDIO TEST A sound consisting of a single frequency is called a pure tone. An audiometer produces pure tones to test a person's auditory functions. Suppose an audiometer produces a pure tone with a frequency f of 2000 hertz (cycles per second). The maximum pressure P produced from the pure tone is 2 millipascals. Write and graph a sine model that gives the pressure P as a function of the time t (in seconds).

Solution

STEP 1 Find the values of a and b in the model $P=a \sin b t$. The maximum pressure is 2 , so $a=2$. You can use the frequency f to find b.

$$
\text { frequency }=\frac{1}{\text { period }} \quad \Rightarrow 2000=\frac{b}{2 \pi} \quad 4000 \pi=b
$$

The pressure P as a function of time t is given by $P=2 \sin 4000 \pi t$.
STEP 2 Graph the model. The amplitude is $a=2$ and the period is $\frac{1}{f}=\frac{1}{2000}$.
Intercepts: (0, 0);
$\left(\frac{1}{2} \cdot \frac{1}{2000}, 0\right)=\left(\frac{1}{4000}, 0\right) ;\left(\frac{1}{2000}, 0\right)$
Maximum: $\left(\frac{1}{4} \cdot \frac{1}{2000}, 2\right)=\left(\frac{1}{8000}, 2\right)$
Minimum: $\left(\frac{3}{4} \cdot \frac{1}{2000},-2\right)=\left(\frac{3}{8000},-2\right)$

