14.1 a.3, a.5, 2A.1.A; P.1.A

 Graph Sine, Cosine,

 Graph Sine, Cosine, and Tangent Functions

 and Tangent Functions}You evaluated sine, cosine, and tangent functions.

Why? You will graph sine, cosine, and tangent functions. So you can model oscillating motion, as in Ex. 31.

Key Vocabulary

- amplitude
- periodic function
- cycle
- period
- frequency

In this lesson, you will learn to graph functions of the form $y=a \sin b x$ and $y=a \cos b x$ where a and b are positive constants and x is in radian measure. The graphs of all sine and cosine functions are related to the graphs of the parent functions $y=\sin x$ and $y=\cos x$, which are shown below.

KEY CONCEPT

For Your Notebook

Characteristics of $y=\sin x$ and $y=\cos x$

- The domain of each function is all real numbers.
- The range of each function is $-1 \leq y \leq 1$. Therefore, the minimum value of each function is $m=-1$ and the maximum value is $M=1$.
- The amplitude of each function's graph is half the difference of the maximum M and the minimum m, or $\frac{1}{2}(M-m)=\frac{1}{2}[1-(-1)]=1$.
- Each function is periodic, which means that its graph has a repeating pattern. The shortest repeating portion of the graph is called a cycle. The horizontal length of each cycle is called the period. Each graph shown above has a period of 2π.
- The x-intercepts for $y=\sin x$ occur when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$.
- The x-intercepts for $y=\cos x$ occur when $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots$.

