TAKS PREPARATION

REVIEWING SIMILAR FIGURES AND SOLIDS

Two polygons are *similar polygons* if corresponding angles are congruent and corresponding side lengths are proportional.

In the diagram below, *ABCD* is similar to *EFGH*. You can write "*ABCD* is similar to *EFGH*" as *ABCD* ~ *EFGH*.

If two polygons are triangles, you can use the results below to show similarity.

Angle-Angle Similarity Postulate: If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

Side-Side Similarity Theorem: If the lengths of the corresponding sides of two triangles are proportional, then the triangles are similar.

Side-Angle-Side Similarity Theorem: If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

М

Q

36

Ρ

24

N

EXAMPLE

 $\triangle MNP$ is similar to $\triangle MRQ$. What is the perimeter of $\triangle MRQ$?

Solution

. . .

So

.....

AVOID ERRORS

TAKS Obj. 8

TEKS G.11.A, G.11.B, G.11.C

When naming similar polygons, list letters for corresponding angles in the same order. In the example, for instance, you could not write $\triangle MNP \sim \triangle QRM$ because $\angle M$ and $\angle Q$ are not corresponding angles. To determine the perimeter of $\triangle MRQ$, you first need to find *RQ* and *QM*.

Since $\triangle MNP \sim \triangle MRQ$, you know $\frac{MN}{MR} = \frac{NP}{RQ} = \frac{PM}{QM}$.

Find *RQ* and *QM* by writing and solving two proportions.

. . . .

-

$$\frac{MN}{MR} = \frac{NP}{RQ} \qquad \text{Write proportion.} \qquad \frac{MN}{MR} = \frac{PM}{QM}$$

$$\frac{42}{7} = \frac{24}{RQ} \qquad \text{Substitute.} \qquad \frac{42}{7} = \frac{36}{QM}$$

$$RQ = 4 \qquad \text{Solve the proportion.} \qquad QM = 6$$

$$MR + RO + OM = 7 + 4 + 6 = 17.$$

The perimeter of $\triangle MRQ$ is 17 units.