13 TAKS PREPARATION

Taks obj. 8 REVIEWING SIMILAR FIGURES AND SOLIDS
TEKS G.11.A,
G.11.B, G.11.C

Two polygons are similar polygons if corresponding angles are congruent and corresponding side lengths are proportional.

In the diagram below, $A B C D$ is similar to $E F G H$. You can write " $A B C D$ is similar to $E F G H "$ as $A B C D \sim E F G H$.

Corresponding angles

$\angle A \cong \angle E, \angle B \cong \angle F, \angle C \cong \angle G$, and $\angle D \cong \angle H$

Ratios of corresponding sides

$\frac{A B}{E F}=\frac{B C}{F G}=\frac{C D}{G H}=\frac{D A}{H E}$
$A B C D \sim E F G H$
If two polygons are triangles, you can use the results below to show similarity.
Angle-Angle Similarity Postulate: If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

Side-Side-Side Similarity Theorem: If the lengths of the corresponding sides of two triangles are proportional, then the triangles are similar.

Side-Angle-Side Similarity Theorem: If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

EXAMPLE

 of $\triangle M R Q$?
Solution

To determine the perimeter of $\triangle M R Q$, you first need to find $R Q$ and $Q M$.

AVOID ERRORS
When naming similar polygons, list letters for corresponding angles in the same order. In the example, for instance, you could not write $\triangle M N P \sim \triangle Q R M$ because $\angle M$ and $\angle Q$ are not corresponding angles.

Since $\triangle M N P \sim \triangle M R Q$, you know $\frac{M N}{M R}=\frac{N P}{R Q}=\frac{P M}{Q M}$.
Find $R Q$ and $Q M$ by writing and solving two proportions.

$$
\begin{aligned}
\frac{M N}{M R} & =\frac{N P}{R Q} & & \text { Write proportion. }
\end{aligned} \frac{M N}{M R}=\frac{P M}{Q M}
$$

- The perimeter of $\triangle M R Q$ is 17 units.

