SLOPE-INTERCEPT FORM If you write the equations in Example 1 as y = 2x + 0 and y = 1x + 3, you can see that the *x*-coefficients, 2 and 1, are the slopes of the lines, while the constant terms, 0 and 3, are the *y*-intercepts. In general, a line with equation y = mx + b has slope *m* and *y*-intercept *b*. The equation y = mx + b is said to be in **slope-intercept form**.

KEY CO	NCEPT	For Your Notebook	
Using Slope-Intercept Form to Graph an Equation			
STEP 1	Write the equation in slope-intercept form by solving for <i>y</i> .		
STEP 2	Identify the <i>y</i> -intercept <i>b</i> and use it to p the line crosses the <i>y</i> -axis.	plot the point $(0, b)$ where	
STEP 3	Identify the slope <i>m</i> and use it to plot a	second point on the line.	
STEP 4	Draw a line through the two points.		

EXAMPLE 2 Graph an equation in slope-intercept form

Graph
$$y = -\frac{2}{3}x - 1$$
.

Solution

- *STEP 1* The equation is already in slope-intercept form.
- **STEP 2** Identify the *y*-intercept. The *y*-intercept is -1, so plot the point (0, -1) where the line crosses the *y*-axis.
- *STEP 3* Identify the slope. The slope is $-\frac{2}{3}$, or $\frac{-2}{3}$, so plot a second point on the line by starting at (0, -1) and then moving down 2 units and right 3 units. The second point is (3, -3).
- *STEP 4* **Draw** a line through the two points.

Animated Algebra at classzone.com

GUIDED PRACTICE for Examples 1 and 2

Graph the equation. <i>Compare</i> the graph with the graph of $y = x$.				
1. $y = -2x$	2. $y = x - 2$	3. $y = 4x$		
Graph the equation.				
4. $y = -x + 2$	5. $y = \frac{2}{5}x + 4$	6. $y = \frac{1}{2}x - 3$		
7. $y = 5 + x$	8. $f(x) = 1 - 3x$	9. $f(x) = 10 - x$		

ANOTHER WAY Because $-\frac{2}{3} = \frac{2}{-3}$, you could also plot a second point by moving up 2 units and left 3 units.