SLOPE-INTERCEPT FORM If you write the equations in Example 1 as $y=2 x+0$ and $y=1 x+3$, you can see that the x-coefficients, 2 and 1 , are the slopes of the lines, while the constant terms, 0 and 3 , are the y-intercepts. In general, a line with equation $y=m x+b$ has slope m and y-intercept b. The equation $y=m x+b$ is said to be in slope-intercept form.

KEY CONCEPT

For Your Notebook

Using Slope-Intercept Form to Graph an Equation

STEP 1 Write the equation in slope-intercept form by solving for y.
STEP 2 Identify the y-intercept b and use it to plot the point $(0, b)$ where the line crosses the y-axis.

STEP 3 Identify the slope m and use it to plot a second point on the line.
STEP 4 Draw a line through the two points.

EXAMPLE 2 Graph an equation in slope-intercept form

Graph $y=-\frac{2}{3} x-1$.

Solution

STEP 1 The equation is already in slope-intercept form.
STEP 2 Identify the y-intercept. The y-intercept is -1 , so plot the point $(0,-1)$ where the line crosses the y-axis.

STEP 3 Identify the slope. The slope is $-\frac{2}{3}$, or $\frac{-2}{3}$, so plot a second point on the line by starting at $(0,-1)$ and then moving down 2 units and right 3 units. The second point is $(3,-3)$.

STEP 4 Draw a line through the two points.

[^0]ANOTHER WAY
Because $-\frac{2}{3}=\frac{2}{-3}$, you could also plot a second point by moving up 2 units and left 3 units.

Guided Practice for Examples 1 and 2

Graph the equation. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}$.

1. $y=-2 x$
2. $y=x-2$
3. $y=4 x$

Graph the equation.

4. $y=-x+2$
5. $y=\frac{2}{5} x+4$
6. $y=\frac{1}{2} x-3$
7. $y=5+x$
8. $f(x)=1-3 x$
9. $f(x)=10-x$

[^0]: AnimatedAlgebra
 at classzone.com

