Lessons 13.4-13.6

MULTIPLE CHOICE

1. AREA OF A PROPERTY You are buying the triangular piece of property shown. What is the approximate length of the third side? TEKS $a .4$

(A) 210 yards
(B) 427 yards
(C) 633 yards
(D) 680 yards
2. SATELLITE IMAGING The IKONOS satellite takes images of Earth's surface from a height of about 423 miles. The largest region IKONOS can view is about 1045 miles across. IKONOS can take photographs that show objects 1 meter across provided the objects lie within a region 413 miles across. What is the approximate angle IKONOS rotates as it pans across a region this size? TEKS . 1

(F) 26.0°
(G) 44.3°
(H) 52.0°
(J) 64.0°
3. CONSTRUCTION You want to build a triangular concrete patio that has sides of length 8 feet, 11 feet, and 15 feet, and a thickness of 0.5 foot. One bag of cement makes 0.33 cubic foot of concrete. How many bags of cement do you need to make the patio? TEKS a. 1
(A) 65 bags
(B) 79 bags
(C) 109 bags
(D) 130 bags
4. THROWING DISTANCE On a baseball field, the pitcher's mound at P is 60.5 feet from home plate at H and 95 feet from an arc where the outfield grass begins. A ball is hit 25° to the right of the pitcher's mound and travels to the edge of the grass. What approximate distance d must an outfielder throw the ball to make an out at home plate? TEKS a. 4

(F) 47.6 feet
(G) 112.6 feet
(H) 131.4 feet
(J) 146.3 feet
5. MAXIMUM VOLUME A trough can be made by folding a rectangular piece of metal in half and then enclosing the ends. The volume of water the trough can hold depends on how far you bend the metal. Use a graphing calculator to estimate the maximum volume of the trough. (Hint: First find the volume of the trough as a function of θ.) TEKS a. 1

(A) $54 \mathrm{ft}^{3}$
(B) $72 \mathrm{ft}^{3}$
(C) $216 \mathrm{ft}^{3}$
(D) $218 \mathrm{ft}^{3}$

GRIDDED ANSWER © (1) (3) (4) (5) C) (8) ©

6. BEACH SLOPE After walking 20 feet into the water at a beach, you notice that the depth of the water is 3 feet. Find the angle θ at which the beach slopes. Round your answer to the nearest tenth of a degree. TEKS a. 4

