PROBLEM SOLVING WORKSHOP LESSON 13.6
a.4, 2A.3.A, 2A.3.B; P.3.E

Another Way to Solve Example 4, page 891

MULTIPLE REPRESENTATIONS In Example 4 on page 891, you found the area of a triangle given the lengths of its sides by using Heron's formula. You can also find the area of the triangle by writing and solving a system of equations.

PROBLEM

URBAN PLANNING The intersection of three streets forms a piece of land called a traffic triangle. Find the area of the traffic triangle shown.

Method

Using a System of Equations Use a system of quadratic equations to find the triangle's height h. Then find the area of the triangle using the formula $A=\frac{1}{2} b h$.

STEP 1 Draw a new diagram of the triangle as shown. Let h be the height of the triangle. The altitude labeled by h divides $\overline{A B}$ into two segments of length x and $350-x$.

STEP 2 Use the Pythagorean theorem to write a system of quadratic equations.

Solve the first equation for h^{2} to get $h^{2}=170^{2}-x^{2}$. Substitute this expression for h^{2} in the second equation, and solve for x.

$$
\begin{aligned}
170^{2}-x^{2}+(350-x)^{2} & =240^{2} \\
28,900-x^{2}+122,500-700 x+x^{2} & =57,600 \\
-700 x & =-93,800 \\
x & =134
\end{aligned}
$$

STEP 4 Use the Pythagorean theorem to find that $h=\sqrt{170^{2}-134^{2}} \approx 104.6$.
So the area of the triangle is $A=\frac{1}{2} b h \approx \frac{1}{2}(350)(104.6) \approx 18,300$.

- The area of the triangle is about 18,300 square yards.

Practice

FINDING AREAS Use the method above to find the area of $\triangle A B C$ with the given side lengths.

1. $a=12, b=17, c=26$
2. $a=63, b=92, c=87$
3. $a=101, b=94, c=153$
4. WHAT IF? Suppose $a=200 \mathrm{yd}$ in the problem above. Find the area of the triangle.
5. GARDEN AREA A triangular garden has sides with lengths 50 feet, 38 feet, and 43 feet. Use the method above to find the area of the garden.
