Solve $\triangle A B C$.

1. $a=8, c=10, B=48^{\circ}$
2. $a=14, b=16, c=9$
3. WHAT IF? In Example 3, suppose that $a=193 \mathrm{~cm}, b=335 \mathrm{~cm}$, and $c=186 \mathrm{~cm}$. Find the step angle θ.

HERON'S AREA FORMULA The law of cosines can be used to establish the following formula for the area of a triangle. The formula is credited to the Greek mathematician Heron (circa A.D. 100).

KEY CONCEPT

For Your Notebook

Heron's Area Formula

The area of the triangle with sides of length a, b, and c is

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=\frac{1}{2}(a+b+c)$. The variable s is called the semiperimeter, or half-perimeter, of the triangle.

ANOTHER WAY

For an alternative method for solving the problem in Example 4, turn to page 895 for the Problem Solving Workshop.

Example 4 TAKS REASONING: Multi-Step Problem

URBAN PLANNING The intersection of three streets forms a piece of land called a traffic triangle. Find the area of the traffic triangle shown.

Solution

STEP 1 Find the semiperimeter s.

$$
s=\frac{1}{2}(a+b+c)=\frac{1}{2}(170+240+350)=380
$$

STEP 2 Use Heron's formula to find the area of $\triangle A B C$.

$$
\begin{aligned}
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{380(380-170)(380-240)(380-350)} \approx 18,300
\end{aligned}
$$

- The area of the traffic triangle is about 18,300 square yards.

Guided Practice for Example 4

Find the area of $\triangle A B C$.
4.

5.

6.

