EXAMPLE 2 Solve a triangle for the SSS case

AVOID ERRORS

In Example 2, the largest angle is found first to make sure that the other two angles are acute. This way, when you use the law of sines to find another angle measure, you will know that it is between 0° and 90°.

Solve $\triangle A B C$ with $a=12, b=27$, and $c=20$.

Solution

First find the angle opposite the longest side, $\overline{A C}$. Use the law of cosines to solve for B.

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
27^{2} & =12^{2}+20^{2}-2(12)(20) \cos B \\
\frac{27^{2}-12^{2}-20^{2}}{-2(12)(20)} & =\cos B \\
-0.3854 & \approx \cos B \\
B & \approx \cos ^{-1}(-0.3854) \approx 112.7^{\circ}
\end{aligned}
$$

> Law of cosines

Substitute.

Solve for $\cos B$.

Simplify.
Use inverse cosine.

Now use the law of sines to find A.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b} \\
& \frac{\sin A}{12}=\frac{\sin 112.7^{\circ}}{27}
\end{aligned}
$$

Law of sines

$$
\text { Substitute for } a, b \text {, and } B \text {. }
$$

$$
\sin A=\frac{12 \sin 112.7^{\circ}}{27} \approx 0.4100 \quad \text { Multiply each side by } 12 \text { and simplify. }
$$

$$
A \approx \sin ^{-1} 0.4100 \approx 24.2^{\circ} \quad \text { Use inverse sine. }
$$

The third angle C of the triangle is $C \approx 180^{\circ}-24.2^{\circ}-112.7^{\circ}=43.1^{\circ}$.

- In $\triangle A B C, A \approx 24.2^{\circ}, B \approx 112.7^{\circ}$, and $C \approx 43.1^{\circ}$.

EXAMPLE 3 Use the law of cosines in real life

SCIENCE Scientists can use a set of footprints to calculate an organism's step angle, which is a measure of walking efficiency. The closer the step angle is to 180°, the more efficiently the organism walked.
The diagram at the right shows a set of footprints for a dinosaur. Find the step angle B.

Solution

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B & & \text { Law of cosines } \\
316^{2} & =155^{2}+197^{2}-2(155)(197) \cos B & & \text { Substitute. } \\
\frac{316^{2}-155^{2}-197^{2}}{-2(155)(197)} & =\cos B & & \text { Solve for cos } B . \\
-0.6062 & \approx \cos B & & \text { Simplify. } \\
B & \approx \cos ^{-1}(-0.6062) \approx 127.3^{\circ} & & \text { Use inverse cosine. }
\end{aligned}
$$

- The step angle B is about 127.3°.

