13.6 a.4, 2A.2.A, 2A.4.C; P.3.E
 Apply the Law of Cosines

You solved triangles using the law of sines.
You will solve triangles using the law of cosines.
So you can find angles formed by trapeze artists, as in Ex. 43.

Key Vocabulary

- law of cosines

In Lesson 13.5, you solved triangles for the AAS, ASA, and SSA cases. In this lesson, you will use the law of cosines to solve triangles when two sides and the included angle are known (SAS), or when all three sides are known (SSS).

KEY CONCEPT

For Your Notebook

Law of Cosines

If $\triangle A B C$ has sides of length a, b, and c as shown, then:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

EXAMPLE 1 Solve a triangle for the SAS case

Solve $\triangle A B C$ with $a=11, c=14$, and $B=34^{\circ}$.

Solution

Use the law of cosines to find side length b.

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
b^{2} & =11^{2}+14^{2}-2(11)(14) \cos 34^{\circ} \\
b^{2} & \approx 61.7 \\
b & \approx \sqrt{61.7} \approx 7.85
\end{aligned}
$$

Use the law of sines to find the measure of angle A.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of sines } \\
\frac{\sin A}{11} & =\frac{\sin 34^{\circ}}{7.85} & & \text { Substitute for } a, b, \text { and } B . \\
\sin A & =\frac{11 \sin 34^{\circ}}{7.85} \approx 0.7836 & & \text { Multiply each side by } 11 \text { and simplify. } \\
A & \approx \sin ^{-1} 0.7836 \approx 51.6^{\circ} & & \text { Use inverse sine. }
\end{aligned}
$$

The third angle C of the triangle is $C \approx 180^{\circ}-34^{\circ}-51.6^{\circ}=94.4^{\circ}$.

- In $\triangle A B C, b \approx 7.85, A \approx 51.6^{\circ}$, and $C \approx 94.4^{\circ}$.

