

Key Vocabulary

law of cosines

In Lesson 13.5, you solved triangles for the AAS, ASA, and SSA cases. In this lesson, you will use the **law of cosines** to solve triangles when two sides and the included angle are known (SAS), or when all three sides are known (SSS).

EXAMPLE 1 Solve a triangle for the SAS case

Solve $\triangle ABC$ with a = 11, c = 14, and $B = 34^{\circ}$. 34° **Solution** Use the law of cosines to find side length *b*. $b^2 = a^2 + c^2 - 2ac\cos B$ Law of cosines $b^2 = 11^2 + 14^2 - 2(11)(14) \cos 34^\circ$ Substitute for *a*, *c*, and *B*. $b^2 \approx 61.7$ Simplify. $b \approx \sqrt{61.7} \approx 7.85$ Take positive square root. • Use the law of sines to find the measure of angle A. $\frac{\sin A}{a} = \frac{\sin B}{b}$ Law of sines $\underline{\sin A} = \underline{\sin 34^\circ}$ Substitute for *a*, *b*, and *B*. 11 7.85 $\sin A = \frac{11 \sin 34^{\circ}}{7.85} \approx 0.7836$ Multiply each side by 11 and simplify. $A \approx \sin^{-1} 0.7836 \approx 51.6^{\circ}$ Use inverse sine.

The third angle *C* of the triangle is $C \approx 180^{\circ} - 34^{\circ} - 51.6^{\circ} = 94.4^{\circ}$.

In $\triangle ABC$, $b \approx 7.85$, $A \approx 51.6^\circ$, and $C \approx 94.4^\circ$.

ANOTHER WAY

When you know all three sides and one angle, you can use the law of cosines *or* the law of sines to find the measure of a second angle.