## **EXAMPLE 3** Examine the SSA case with no solution

Solve  $\triangle ABC$  with  $A = 51^\circ$ , a = 3.5, and b = 5.

## Solution

Begin by drawing a horizontal line. On one end form a 51° angle (*A*) and draw a segment 5 units long ( $\overline{AC}$ , or *b*). At vertex *C*, draw a segment 3.5 units long (*a*). You can see that *a* needs to be at least 5 sin 51°  $\approx$  3.9 units long to reach the horizontal side and form a triangle. So, it is not possible to draw the indicated triangle.



## EXAMPLE 4 Solve the SSA case with two solutions

Solve  $\triangle ABC$  with  $A = 40^\circ$ , a = 13, and b = 16.

## Solution

First make a sketch. Because  $b \sin A = 16 \sin 40^{\circ} \approx 10.3$ , and 10.3 < 13 < 16 (h < a < b), two triangles can be formed.



Use the law of sines to find the possible measures of *B*.

$$\frac{\sin B}{16} = \frac{\sin 40^{\circ}}{13}$$
Law of sines
$$\sin B = \frac{16 \sin 40^{\circ}}{13} \approx 0.7911$$
Use a calculator.

There are two angles *B* between 0° and 180° for which sin  $B \approx 0.7911$ . One is acute and the other is obtuse. Use your calculator to find the acute angle:  $\sin^{-1} 0.7911 \approx 52.3^{\circ}$ .

The obtuse angle has 52.3° as a reference angle, so its measure is  $180^{\circ} - 52.3^{\circ} = 127.7^{\circ}$ . Therefore,  $B \approx 52.3^{\circ}$  or  $B \approx 127.7^{\circ}$ .

Now find the remaining angle *C* and side length *c* for each triangle.

 Triangle 1
 Triangle 2

  $C \approx 180^\circ - 40^\circ - 52.3^\circ = 87.7^\circ$   $C \approx 180^\circ - 40^\circ - 127.7^\circ = 12.3^\circ$ 
 $\frac{c}{\sin 87.7^\circ} = \frac{13}{\sin 40^\circ}$   $c = \frac{13 \sin 87.7^\circ}{\sin 40^\circ} \approx 20.2$ 
 $c = \frac{13 \sin 87.7^\circ}{\sin 40^\circ} \approx 20.2$   $c = \frac{13 \sin 12.3^\circ}{\sin 40^\circ} \approx 4.3$  

 In Triangle 1,  $B \approx 52.3^\circ$ ,  $C \approx 87.7^\circ$ , and  $c \approx 20.2$ .
 In Triangle 2,  $B \approx 127.7^\circ$ ,  $C \approx 12.3^\circ$ , and  $c \approx 4.3$ .