ExAMPLE 3 Examine the SSA case with no solution

Solve $\triangle A B C$ with $A=51^{\circ}, a=3.5$, and $b=5$.

Solution

Begin by drawing a horizontal line. On one end form a 51° angle (A) and draw a segment 5 units long $(\overline{A C}$, or $b)$. At vertex C, draw a segment 3.5 units long (a). You can see that a needs to be at least $5 \sin 51^{\circ} \approx 3.9$ units long to reach the horizontal side and form a triangle. So, it is not possible to draw the
 indicated triangle.

EXAMPLE 4 Solve the SSA case with two solutions

Solve $\triangle A B C$ with $A=40^{\circ}, a=13$, and $b=16$.

Solution

First make a sketch. Because $b \sin A=16 \sin 40^{\circ} \approx 10.3$, and $10.3<13<16(h<a<b)$, two triangles can be formed.

Triangle 1

Triangle 2

Use the law of sines to find the possible measures of B.

$$
\begin{array}{ll}
\frac{\sin B}{16}=\frac{\sin 40^{\circ}}{13} & \text { Law of sines } \\
\sin B=\frac{16 \sin 40^{\circ}}{13} \approx 0.7911 & \text { Use a calculator. }
\end{array}
$$

There are two angles B between 0° and 180° for which $\sin B \approx 0.7911$. One is acute and the other is obtuse. Use your calculator to find the acute angle:
$\sin ^{-1} 0.7911 \approx 52.3^{\circ}$.
The obtuse angle has 52.3° as a reference angle, so its measure is $180^{\circ}-52.3^{\circ}=127.7^{\circ}$. Therefore, $B \approx 52.3^{\circ}$ or $B \approx 127.7^{\circ}$.

Now find the remaining angle C and side length c for each triangle.

Triangle 1
$C \approx 180^{\circ}-40^{\circ}-52.3^{\circ}=87.7^{\circ}$

$$
\frac{c}{\sin 87.7^{\circ}}=\frac{13}{\sin 40^{\circ}}
$$

$$
c=\frac{13 \sin 87.7^{\circ}}{\sin 40^{\circ}} \approx 20.2
$$

- In Triangle $1, B \approx 52.3^{\circ}, C \approx 87.7^{\circ}$, and $c \approx 20.2$.

Triangle 2
$C \approx 180^{\circ}-40^{\circ}-127.7^{\circ}=12.3^{\circ}$

$$
\begin{aligned}
\frac{c}{\sin 12.3^{\circ}} & =\frac{13}{\sin 40^{\circ}} \\
c & =\frac{13 \sin 12.3^{\circ}}{\sin 40^{\circ}} \approx 4.3
\end{aligned}
$$

In Triangle $2, B \approx 127.7^{\circ}, C \approx 12.3^{\circ}$, and $c \approx 4.3$.

