13.4. Evaluate Inverse Trigonometric Functions
 a.1, a.3, 2A.4.C; P.3.A

Before
Now
Why?

You found values of trigonometric functions given angles. You will find angles given values of trigonometric functions. So you can find launch angles, as in Example 4.

Key Vocabulary

- inverse sine
- inverse cosine
- inverse tangent

So far in this chapter, you have learned to evaluate trigonometric functions of a given angle. In this lesson, you will study the reverse problem-finding an angle that corresponds to a given value of a trigonometric function.

Suppose you were asked to find an angle θ whose sine is 0.5 . After considering the problem, you would realize many such angles exist. For instance, the angles

$$
\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}, \text { and }-\frac{7 \pi}{6}
$$

all have a sine value of 0.5 . To obtain a unique angle θ such that $\sin \theta=0.5$, you must restrict the domain of the sine function. Domain restrictions allow the inverse sine, inverse cosine, and inverse tangent functions to be defined.

KEY CONCEPT

For Your Notebook

Inverse Trigonometric Functions

If $-1 \leq a \leq 1$, then the inverse sine of a is an angle θ, written $\theta=\sin ^{-1} a$, where:
(1) $\sin \theta=a$
(2) $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\left(\right.$ or $\left.-90^{\circ} \leq \theta \leq 90^{\circ}\right)$

If $-1 \leq a \leq 1$, then the inverse cosine of a is an angle θ, written $\theta=\cos ^{-1} a$, where:
(1) $\cos \theta=a$
(2) $0 \leq \theta \leq \pi\left(\right.$ or $\left.0^{\circ} \leq \theta \leq 180^{\circ}\right)$

If a is any real number, then the inverse tangent of a is an angle θ, written $\theta=\tan ^{-1} a$, where:
(1) $\tan \theta=a$
(2) $-\frac{\pi}{2}<\theta<\frac{\pi}{2}\left(\right.$ or $\left.-90^{\circ}<\theta<90^{\circ}\right)$

