Investigating $\left.\left.A \backslash C^{i}\right] \ / \int\right]$ Use berione Lesson 13.4

13.4 Investigating Inverse Trigonometric Functions

MATERIALS • paper and pencil teks a.3,2A.1.A, 2A.4.C; P.3.A

QUESTION Do the sine and cosine functions have inverse functions?

EXPLORE Determine if a trigonometric function has an inverse function

STEP 1 Make a table Copy and complete the table to find the values of $f(\theta)=\sin \theta$ and $g(\theta)=\cos \theta$ for each of the given values of θ.

θ	$-\pi$	$-\frac{3 \pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$f(\theta)=\sin \theta$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$g(\theta)=\cos \theta$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

STEP 2 Analyze sine Use the table to explain why $f(\theta)=\sin \theta$ does not have an inverse function on the domain $-\pi \leq \theta \leq \pi$.

STEP 3 Analyze cosine Does $g(\theta)=\cos \theta$ have an inverse function on the domain $-\pi \leq \theta \leq \pi$? Explain why or why not.

STEP 4 Use graphs The graphs of $f(\theta)=\sin \theta$ and $g(\theta)=\cos \theta$ are shown for the domain $-\pi \leq \theta \leq \pi$. Explain how the graphs justify your answers in Steps 2 and 3.

DRAW CONCLUSIONS Use your observations to complete these exercises

1. Use the graph of $f(\theta)=\sin \theta$ in Step 4 to choose a restricted domain for which the sine function does have an inverse function. Explain how you made your choice.
2. Give a restricted domain for which $g(\theta)=\cos \theta$ has an inverse function. Explain how you chose the domain.
3. Are the domains that you wrote in Exercises 1 and 2 the only domains for which the trigonometric functions have inverse functions? Explain.
