

a. In the diagram, coordinates are given in picometers (pm). (*Note*: 1 pm = 10^{-12} m.) Find the coordinates (x, y) of the center of the oxygen atom in Quadrant II.

- **b.** Find the distance *d* (in picometers) between the centers of the two unbonded oxygen atoms.
- 39. 👆 TAKS REASONING A sprinkler at ground level is used to water a garden. The water leaving the sprinkler has an initial speed of 25 feet per second.
 - a. Calculate Copy the table below. Use the formula in Example 5 on page 869 to complete the table.

Angle of sprinkler, θ	25°	30°	35°	40°	45°	50°	55°	60°	65°
Horizontal distance water travels, d	?	?	?	?	?	?	?	?	?

- **b.** Interpret What value of θ appears to maximize the horizontal distance traveled by the water? Use the formula for horizontal distance traveled and the unit circle to explain why your answer makes sense.
- **c. Compare** *Compare* the horizontal distance traveled by the water when $\theta = (45 - k)^{\circ}$ with the distance when $\theta = (45 + k)^{\circ}$.
- **40. CHALLENGE** The latitude of a point on Earth is the degree measure of the shortest arc from that point to the equator. For example, the latitude of point *P* in the diagram equals the degree measure of arc PE. At what latitude θ is the circumference of the circle of latitude at *P* half the distance around the equator?

