EXAMPLE 4 Use reference angles to evaluate functions

Evaluate (a) tan (-240°) and (b) $\csc \frac{17\pi}{6}$.

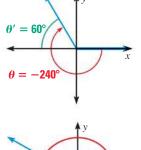
Solution

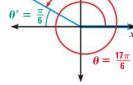
a. The angle -240° is coterminal with 120° . The reference angle is $\theta' = 180^{\circ} - 120^{\circ} = 60^{\circ}$. The tangent function is negative in Quadrant II, so you can write:

$$\tan(-240^{\circ}) = -\tan 60^{\circ} = -\sqrt{3}$$

b. The angle $\frac{17\pi}{6}$ is coterminal with $\frac{5\pi}{6}$. The reference angle is $\theta' = \pi - \frac{5\pi}{6} = \frac{\pi}{6}$. The cosecant function is positive in Quadrant II, so you can write:

$$\csc\frac{17\pi}{6} = \csc\frac{\pi}{6} = 2$$





GUIDED PRACTICE for Examples 3 and 4

Sketch the angle. Then find its reference angle.

5. 210°

8.
$$\frac{15\pi}{4}$$

9. Evaluate $\cos(-210^\circ)$ without using a calculator.

EXAMPLE 5 Calculate horizontal distance traveled

ROBOTICS The "frogbot" is a robot designed for exploring rough terrain on other planets. It can jump at a 45° angle and with an initial speed of 16 feet per second. On Earth, the horizontal distance d (in feet) traveled by a projectile launched at an angle θ and with an initial speed v (in feet per second) is given by:

Frogbot

7. $-\frac{7\pi}{9}$

INTERPRET MODELS This model neglects air

resistance and assumes

that the projectile's starting and ending

heights are the same.

$$d = \frac{v^2}{32} \sin 2\theta$$

How far can the frogbot jump on Earth?

Solution

--->

$$d = \frac{v^2}{32} \sin 2\theta$$

$$= \frac{16^2}{32} \sin (2 \cdot 45^\circ)$$

$$= 8$$
Substitute 16 for v and 45° for θ .

The frogbot can jump a horizontal distance of 8 feet on Earth.