EXAMPLE 4 Use reference angles to evaluate functions

Evaluate (a) $\tan \left(-240^{\circ}\right)$ and (b) $\csc \frac{17 \pi}{6}$.

Solution

a. The angle -240° is coterminal with 120°. The reference angle is $\theta^{\prime}=180^{\circ}-120^{\circ}=60^{\circ}$. The tangent function is negative in Quadrant II, so you can write:

$$
\tan \left(-240^{\circ}\right)=-\tan 60^{\circ}=-\sqrt{3}
$$

b. The angle $\frac{17 \pi}{6}$ is coterminal with $\frac{5 \pi}{6}$. The reference angle is $\theta^{\prime}=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}$. The cosecant function is positive in Quadrant II, so you can write:

$$
\csc \frac{17 \pi}{6}=\csc \frac{\pi}{6}=2
$$

Guided Practice for Examples 3 and 4

Sketch the angle. Then find its reference angle.
5. 210°
6. -260°
7. $-\frac{7 \pi}{9}$
8. $\frac{15 \pi}{4}$
9. Evaluate $\cos \left(-210^{\circ}\right)$ without using a calculator.

EXAMPLE 5 Calculate horizontal distance traveled

ROBOTICS The "frogbot" is a robot designed for exploring rough terrain on other planets. It can jump at a 45° angle and with an initial speed of 16 feet per second. On Earth, the horizontal distance d (in feet) traveled by a projectile launched at an angle θ and with an initial speed v (in feet per second) is given by:

Frogbot

$$
d=\frac{v^{2}}{32} \sin 2 \theta
$$

resistance and assumes that the projectile's starting and ending heights are the same.

How far can the frogbot jump on Earth?

Solution

$$
\begin{aligned}
d & =\frac{v^{2}}{32} \sin 2 \theta & & \text { Write model for horizontal distance. } \\
& =\frac{16^{2}}{32} \sin \left(2 \cdot 45^{\circ}\right) & & \text { Substitute } 16 \text { for } v \text { and } 45^{\circ} \text { for } \theta . \\
& =8 & & \text { Simplify. }
\end{aligned}
$$

The frogbot can jump a horizontal distance of 8 feet on Earth.

