EXAMPLE 3 Convert between degrees and radians

READING

The unit "radians" is often omitted. For instance, the measure $-\frac{\pi}{12}$ radians may be written simply as $-\frac{\pi}{12}$.

Convert (a) 125° to radians and (b) $-\frac{\pi}{12}$ radians to degrees.
a. $125^{\circ}=125^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$
b. $-\frac{\pi}{12}=\left(-\frac{\pi}{12}\right.$ radians $)\left(\frac{180^{\circ}}{\pi \text { radians }}\right)$
$=\frac{25 \pi}{36}$ radians

$$
=-15^{\circ}
$$

CONCEPT SUMMARY

For Your Notebook

Degree and Radian Measures of Special Angles

The diagram shows equivalent degree and radian measures for special angles from 0° to 360° (0 radians to 2π radians).

You may find it helpful to memorize the equivalent degree and radian measures of special angles in the first quadrant and for $90^{\circ}=\frac{\pi}{2}$ radians. All other special angles are just multiples of these angles.

Guided Practice for Example 3

Convert the degree measure to radians or the radian measure to degrees.

5. 135°
6. -50°
7. $\frac{5 \pi}{4}$
8. $\frac{\pi}{10}$

SECTORS OF CIRCLES A sector is a region of a circle that is bounded by two radii and an arc of the circle. The central angle θ of a sector is the angle formed by the two radii. There are simple formulas for the arc length and area of a sector when the central angle is measured in radians.

KEY CONCEPT

Arc Length and Area of a Sector

The arc length s and area A of a sector with radius r and central angle θ (measured in radians) are as follows.

Arc length: $s=r \theta$
Area: $A=\frac{1}{2} r^{2} \theta$

