COTERMINAL ANGLES In Example 1, the angles 500° and 140° are coterminal because their terminal sides coincide. An angle coterminal with a given angle can be found by adding or subtracting multiples of 360°.

EXAMPLE 2 Find coterminal angles

Find one positive angle and one negative angle that are coterminal with (a) -45° and (b) 395°.

Solution

There are many such angles, depending on what multiple of 360° is added or subtracted.
a. $-45^{\circ}+360^{\circ}=315^{\circ}$
$-45^{\circ}-360^{\circ}=-405^{\circ}$
b. $395^{\circ}-360^{\circ}=35^{\circ}$ $395^{\circ}-2\left(360^{\circ}\right)=-325^{\circ}$

Guided Practice for Examples 1 and 2

Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle.

1. 65°
2. 230°
3. 300°
4. 740°
radian measure Angles can also be measured in radians. To define a radian, consider a circle with radius r centered at the origin as shown. One radian is the measure of an angle in standard position whose terminal side intercepts an arc of length r.

Because the circumference of a circle is $2 \pi r$, there are 2π radians in a full circle. Degree measure and radian measure are therefore related by the equation $360^{\circ}=2 \pi$ radians, or $180^{\circ}=\pi$ radians.

Converting Between Degrees and Radians

Degrees to radians
Multiply degree measure
by $\frac{\pi \text { radians }}{180^{\circ}}$.

Radians to degrees
Multiply radian measure

$$
\text { by } \frac{180^{\circ}}{\pi \text { radians }} .
$$

