EXAMPLE 3 Find an unknown side length of a right triangle

Find the value of x for the right triangle shown.

Solution

Write an equation using a trigonometric function that involves the ratio of x and 8. Solve the equation for *x*.

 $\cos 30^\circ = \frac{\text{adj}}{\text{hyp}}$ Write trigonometric equation. $\frac{\sqrt{3}}{2} = \frac{x}{8}$ Substitute. $4\sqrt{3} = x$ Multiply each side by 8. The length of the side is $x = 4\sqrt{3} \approx 6.93$. Animated Algebra at classzone.com

SOLVING A TRIANGLE Finding *all* unknown side lengths and angle measures of a triangle is called *solving* the triangle. Solving right triangles that have acute angles other than 30°, 45°, and 60° may require the use of a calculator.

To find values of the sine, cosine, and tangent functions on a calculator, use the keys sin, cos, and tan. Use these keys and the reciprocal key for cosecant, secant, and cotangent. Be sure the calculator is set in degree mode.

EXAMPLE 4 Use a calculator to solve a right triangle

Solve $\wedge ABC$.

Solution

READING Throughout this chapter, a capital letter is used to denote both an angle of a triangle and its measure. The same letter in lowercase is used to denote the length of the side opposite that angle.

A and B are complementary angles, so $B = 90^{\circ} - 28^{\circ} = 62^{\circ}$.

 $\tan 28^\circ = \frac{\text{opp}}{\text{adj}}$ $\sec 28^\circ = \frac{\text{hyp}}{\text{adj}}$ Write trigonometric equation.

 $\tan 28^\circ = \frac{a}{15}$ $\sec 28^\circ = \frac{c}{15}$ **Substitute.**

 $15(\tan 28^\circ) = a$ $15\left(\frac{1}{\cos 28^\circ}\right) = c$

 $7.98 \approx a$

So, $B = 62^\circ$, $a \approx 7.98$, and $c \approx 17.0$.

Solve for the variable.

Use a calculator.

GUIDED PRACTICE for Examples 3 and 4

 $17.0 \approx c$