13.1
 a.1, a.4, 2A.2.A; G.5.D

Before
Now
Why?

You used the Pythagorean theorem to find lengths. You will use trigonometric functions to find lengths. So you can measure distances indirectly, as in Example 5

Key Vocabulary

- sine
- cosine
- tangent
- cosecant
- secant
- cotangent

Consider a right triangle that has an acute angle θ (the Greek letter theta). The three sides of the triangle are the hypotenuse, the side opposite θ, and the side adjacent to θ.
Ratios of a right triangle's side lengths are used to define the six trigonometric functions: sine, cosine, tangent, cosecant, secant, and cotangent. These six functions are abbreviated sin, cos, tan, csc, sec, and cot, respectively.

KEY CONCEPT

For Your Noteboodi

Right Triangle Definitions of Trigonometric Functions

Let θ be an acute angle of a right triangle. The six trigonometric functions of θ are defined as follows:

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

The abbreviations opp, adj, and hyp are often used to represent the side lengths of the right triangle. Note that the ratios in the second row are reciprocals of the ratios in the first row:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

EXAMPLE 1 Evaluate trigonometric functions

Evaluate the six trigonometric functions of the angle θ.

Solution

From the Pythagorean theorem, the length of the

REVIEW GEOMETRY For help with the Pythagorean theorem, see p. 995. hypotenuse is $\sqrt{5^{2}+12^{2}}=\sqrt{169}=13$.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{12}{13} & \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{5}{13} & \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{12}{5} \\
\csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{13}{12} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{13}{5} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{5}{12}
\end{array}
$$

