# Tell whether the sequence is *arithmetic*, *geometric*, or *neither*. *Explain*.

**1.** 5, 9, 13, 17, ... **2.** 3, 6, 12, 24, ... **3.** 40, 10, 
$$\frac{5}{2}$$
,  $\frac{5}{8}$ , ... **4.** 4, 7, 12, 19, ...

Write the first six terms of the sequence.

**5.** 
$$a_n = 6 - n^2$$
  
**6.**  $a_n = 7n^3$   
**7.**  $a_1 = 4$   
 $a_n = 5a_{n-1}$   
**8.**  $a_1 = -1$   
 $a_n = a_{n-1} + 6$ 

Write the next term of the sequence, and then write a rule for the *n*th term.

**9.** 5, 11, 17, 23, ... **10.** 3, 15, 75, 375, ... **11.**  $\frac{6}{5}$ ,  $\frac{7}{10}$ ,  $\frac{8}{15}$ ,  $\frac{9}{20}$ , ... **12.** 1.6, 3.2, 4.8, 6.4, ...

# Find the sum of the series.

**13.**  $\sum_{i=1}^{48} i$  **14.**  $\sum_{n=1}^{28} n^2$  **15.**  $\sum_{i=1}^{10} (4i-9)$  **16.**  $\sum_{i=1}^{19} (2i+5)$ **17.**  $\sum_{i=1}^{5} 9(2)^{i-1}$  **18.**  $\sum_{i=1}^{6} 12 \left(\frac{1}{3}\right)^{i-1}$  **19.**  $\sum_{i=1}^{\infty} 8 \left(\frac{3}{4}\right)^{i-1}$  **20.**  $\sum_{i=1}^{\infty} 20 \left(\frac{3}{10}\right)^{i-1}$ 

#### Write the repeating decimal as a fraction in lowest terms.

| <b>21.</b> 0.111 | <b>22.</b> 0.464646 | <b>23.</b> 0.187187187 | <b>24.</b> 0.3252525 |
|------------------|---------------------|------------------------|----------------------|
|                  |                     |                        |                      |

## Write a recursive rule for the sequence.

| <b>25.</b> 2, 12, 72, 432, | <b>26.</b> 3, 10, 17, 24, | <b>27.</b> 135, 45, 15, 5, | <b>28.</b> 1, -3, 9, -27, |
|----------------------------|---------------------------|----------------------------|---------------------------|
|----------------------------|---------------------------|----------------------------|---------------------------|

### Find the first three iterates of the function for the given initial value.

**29.** f(x) = 3x - 7,  $x_0 = 4$  **30.** f(x) = 8 - 5x,  $x_0 = 1$  **31.**  $f(x) = x^2 + 2$ ,  $x_0 = -1$ 

32. **QUILTS** Use the pattern of checkerboard quilts shown.



- **a.** What does *n* represent for each quilt? What does *a<sub>n</sub>* represent?
- **b.** Make a table that shows *n* and  $a_n$  for n = 1, 2, 3, 4, 5, 6, 7, and 8.
- **c.** Use the rule  $a_n = \frac{n^2}{2} + \frac{1}{4}[1 (-1)^n]$  to find  $a_n$  for n = 1, 2, 3, 4, 5, 6, 7, and 8. *Compare* these values with the results in your table. What can you conclude about the sequence defined by this rule?
- **33. AUDITIONS** Several rounds of auditions are being held to cast the three main parts in a play. There are 3072 actors at the first round of auditions. In each successive round of auditions, one fourth of the actors from the previous round remain. Find a rule for the number  $a_n$  of actors in the *n*th round of auditions. For what values of *n* does your rule make sense?