T) GHAPTERREVIEW

EXAMPLE

Find the sum of the series $\sum_{i=1}^{\infty}\left(\frac{4}{5}\right)^{i-1}$, if it exists.
For this series, $a_{1}=1$ and $r=\frac{4}{5}$. Because $|r|<1$, the sum of this series exists.

The sum is $S=\frac{a_{1}}{1-r}=\frac{1}{1-\frac{4}{5}}=5$.

EXERCISES

EXAMPLES
2 and 5
on pp. 821-822
for Exs. 24-31

Find the sum of the infinite geometric series, if it exists.
24. $\sum_{i=1}^{\infty} 3\left(\frac{5}{8}\right)^{i-1}$
25. $\sum_{i=1}^{\infty} 7\left(-\frac{3}{4}\right)^{i-1}$
26. $\sum_{i=1}^{\infty} 4(1.3)^{i-1}$
27. $\sum_{i=1}^{\infty}-0.2(0.5)^{i-1}$

Write the repeating decimal as a fraction in lowest terms.
28. 0.888. .
29. $0.546546546 .$.
30. 0.3787878 .
31. 0.7838383 . .

12.5 Use Recursive Rules with Sequences and Functions pp. 827-833

EXAMPLE

Write a recursive rule for the sequence $6,10,14,18,22, \ldots$
The sequence is arithmetic with first term $a_{1}=6$ and common difference $d=10-6=4$.

$$
\begin{aligned}
a_{n} & =a_{n-1}+d & & \text { General recursive rule for } a_{n} \\
& =a_{n-1}+4 & & \text { Substitute } 4 \text { for } d .
\end{aligned}
$$

So, a recursive rule for the sequence is $a_{1}=6, a_{n}=a_{n-1}+4$.

EXERCISES

EXAMPLES

1, 2, and 3
on pp. 827-828
for Exs. 32-38
Write the first five terms of the sequence.
32. $a_{1}=4, a_{n}=a_{n-1}+9$
33. $a_{1}=8, a_{n}=5 a_{n-1}$
34. $a_{1}=2, a_{n}=n \cdot a_{n-1}$

Write a recursive rule for the sequence.
35. $6,18,54,162,486, \ldots$
36. $4,6,9,13,18, \ldots$
37. $7,13,19,25,31, \ldots$
38. POPULATION A town's population increases at a rate of about 1% per year. In 2000, the town had a population of 26,000 . Write a recursive rule for the town's population P_{n} in year n. Let $n=1$ represent 2000 .

