CHAPTER REVIEW

Find Sums of Infinite Geometric Series

pp. 820-825

EXAMPLE

Find the sum of the series $\sum_{i=1}^{\infty} \left(\frac{4}{5}\right)^{i-1}$, if it exists.

For this series, $a_1 = 1$ and $r = \frac{4}{5}$. Because |r| < 1, the sum of this series exists.

The sum is $S = \frac{a_1}{1 - r} = \frac{1}{1 - \frac{4}{5}} = 5.$

EXERCISES

EXAMPLES 2 and 5 on pp. 821–822 for Exs. 24–31 Find the sum of the infinite geometric series, if it exists.

24.
$$\sum_{i=1}^{\infty} 3\left(\frac{5}{8}\right)^{i-1}$$
 25. $\sum_{i=1}^{\infty} 7\left(-\frac{3}{4}\right)^{i-1}$ **26.** $\sum_{i=1}^{\infty} 4(1.3)^{i-1}$ **27.** $\sum_{i=1}^{\infty} -0.2(0.5)^{i-1}$

Write the repeating decimal as a fraction in lowest terms.

28. 0.888...

29. 0.546546546...

30. 0.3787878... **31.** 0.7838383...

12.5 Use Recursive Rules with Sequences and Functions *pp.* 827–833

Write a recursive rule for the sequence 6, 10, 14, 18, 22,

The sequence is arithmetic with first term $a_1 = 6$ and common difference d = 10 - 6 = 4.

 $a_n = a_{n-1} + d$ General recursive rule for a_n

 $= a_{n-1} + 4$ Substitute 4 for *d*.

Write the first five terms of the sequence.

So, a recursive rule for the sequence is $a_1 = 6$, $a_n = a_{n-1} + 4$.

EXERCISES

EXAMPLES 1, 2, and 3 on pp. 827–828 for Exs. 32–38

32. $a_1 = 4, a_n = a_{n-1} + 9$ **33.** $a_1 = 8, a_n = 5a_{n-1}$ **34.** $a_1 = 2, a_n = n \cdot a_{n-1}$ Write a recursive rule for the sequence.**35.** 6, 18, 54, 162, 486, ...**36.** 4, 6, 9, 13, 18, ...**37.** 7, 13, 19, 25, 31, ...**38.** POPULATION A town's population increases at a rate of about 1% per year.

In 2000, the town had a population of 26,000. Write a recursive rule for the town's population
$$P_n$$
 in year n . Let $n = 1$ represent 2000.