12.2 Analyze Arithmetic Sequences and Series

pp. 802-809

EXAMPLE

Write a rule for the nth term of the sequence $9,13,17,21,25, \ldots$
The sequence is arithmetic with first term $a_{1}=9$ and common difference $d=4$.
So, a rule for the nth term is:

$$
\begin{aligned}
a_{n} & =\boldsymbol{a}_{1}+(n-1) \boldsymbol{d} & & \text { Write general rule. } \\
& =9+(n-1)(4) & & \text { Substitute } 9 \text { for } \boldsymbol{a}_{1} \text { and } 4 \text { for } \boldsymbol{d} . \\
& =5+4 n & & \text { Simplify. }
\end{aligned}
$$

EXERCISES

Write a rule for the nth term of the arithmetic sequence.
9. $8,5,2,-1,-4, \ldots$
10. $d=7, a_{8}=54$
11. $a_{4}=27, a_{11}=69$

Find the sum of the series.
12. $\sum_{i=1}^{15}(3+2 i)$
13. $\sum_{i=1}^{26}(25-3 i)$
14. $\sum_{i=1}^{22}(6 i-5)$
15. $\sum_{i=1}^{30}(-84+8 i)$
16. COMPUTER Joe buys a $\$ 600$ computer on layaway by making a $\$ 200$ down payment and then paying $\$ 25$ per month. Write a rule for the total amount of money paid on the computer after n months.

12.3

Analyze Geometric Sequences and Series

EXAMPLE

Find the sum of the series $\sum_{i=1}^{7} 5(3)^{i-1}$.
The series is geometric with first term $a_{1}=5$ and common ratio $r=3$.

$$
\begin{aligned}
S_{7} & =a_{1}\left(\frac{1-r^{7}}{1-r}\right) & & \text { Write rule for } S_{7} \\
& =5\left(\frac{1-3^{7}}{1-3}\right) & & \text { Substitute } 5 \text { for } a_{1} \text { and } 3 \text { for } r . \\
& =5465 & & \text { Simplify. }
\end{aligned}
$$

EXERCISES

EXAMPLES

2, 3, 4, and 5 on pp. 811-813 for Exs. 17-23

Write a rule for the nth term of the geometric sequence.
17. $256,64,16,4,1, \ldots$
18. $r=5, a_{2}=200$
19. $a_{1}=144, a_{3}=16$

Find the sum of the series.
20. $\sum_{i=1}^{6} 3(5)^{i-1}$
21. $\sum_{i=1}^{9} 8(2)^{i-1}$
22. $\sum_{i=1}^{5} 15\left(\frac{2}{3}\right)^{i-1}$
23. $\sum_{i=1}^{7} 40\left(\frac{1}{2}\right)^{i-1}$

