PARALLEL AND PERPENDICULAR LINES Recall that two lines in a plane are parallel if they do not intersect. Two lines in a plane are perpendicular if they intersect to form a right angle.

Slope can be used to determine whether two different nonvertical lines are parallel or perpendicular.

KEY CONCEPT

For Your Notebook

Slopes of Parallel and Perpendicular Lines

Consider two different nonvertical lines ℓ_{1} and ℓ_{2} with slopes m_{1} and m_{2}.
Parallel Lines The lines are parallel if and only if they have the same slope.

$$
m_{1}=m_{2}
$$

Perpendicular Lines The lines are perpendicular if and only if their slopes are negative reciprocals of each other.

$$
m_{1}=-\frac{1}{m_{2}}, \text { or } m_{1} m_{2}=-1
$$

EXA MPLE 4 Classify parallel and perpendicular lines

Tell whether the lines are parallel, perpendicular, or neither.

a. Line 1: through $(-2,2)$ and $(0,-1)$
Line 2: through $(-4,-1)$ and $(2,3)$
b. Line 1: through $(1,2)$ and $(4,-3)$

Line 2: through $(-4,3)$ and $(-1,-2)$

Solution

a. Find the slopes of the two lines.

$$
\begin{aligned}
& m_{1}=\frac{-1-2}{0-(-2)}=\frac{-3}{2}=-\frac{3}{2} \\
& m_{2}=\frac{3-(-1)}{2-(-4)}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

- Because $m_{1} m_{2}=-\frac{3}{2} \cdot \frac{2}{3}=-1, m_{1}$ and m_{2}
 are negative reciprocals of each other. So, the lines are perpendicular.
b. Find the slopes of the two lines.
$m_{1}=\frac{-3-2}{4-1}=\frac{-5}{3}=-\frac{5}{3}$
$m_{2}=\frac{-2-3}{-1-(-4)}=\frac{-5}{3}=-\frac{5}{3}$
- Because $m_{1}=m_{2}$ (and the lines are different), you can conclude that the lines are parallel.

