EXAMPLE 2 Use mathematical induction

Let $a_{n}=5 a_{n-1}+2$ with $a_{1}=2$. Use mathematical induction to prove that an explicit rule for the nth term is $a_{n}=\frac{5^{n}-1}{2}$.

Solution

Basis Step: Check that the formula works for $n=1$.

$$
a_{1} \stackrel{?}{=} \frac{5^{1}-1}{2} \Longrightarrow 2=2 \checkmark
$$

Inductive Step: Assume that $a_{k}=\frac{5^{k}-1}{2}$. Show that $a_{k+1}=\frac{5^{k+1}-1}{2}$.

$$
\begin{aligned}
a_{k+1} & =5 a_{k}+2 & & \text { Definition of } \boldsymbol{a}_{\boldsymbol{n}} \text { for } \boldsymbol{n}=\boldsymbol{k}+\mathbf{1} \\
& =5\left(\frac{5^{k}-1}{2}\right)+2 & & \text { Substitute for } \boldsymbol{a}_{\boldsymbol{k}^{\circ}} \\
& =\frac{5^{k+1}-5}{2}+2 & & \text { Multiply. } \\
& =\frac{5^{k+1}-5+4}{2} & & \text { Add. } \\
& =\frac{5^{k+1}-1}{2} & & \text { Simplify. }
\end{aligned}
$$

Therefore, an explicit rule for the nth term is $a_{n}=\frac{5^{n}-1}{2}$ for all positive integers n.

PRACTICE

EXAMPLES
1 and 2
on pp. 836-837
for Exs. 1-8

Use mathematical induction to prove the statement.

1. $\sum_{i=1}^{n}(2 i-1)=n^{2}$
2. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
3. $\sum_{i=1}^{n} 2^{i-1}=2^{n}-1$
4. $\sum_{i=1}^{n} a_{1} r^{i-1}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$
5. $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$
6. $\sum_{i=1}^{n}(2 i)^{2}=\frac{2 n(n+1)(2 n+1)}{3}$
7. (2) GEOMETRY The numbers $1,6,15,28, \ldots$ are called hexagonal numbers because they represent the numbers of dots used to make hexagons, as shown below. Prove that the nth hexagonal number H_{n} is given by $H_{n}=n(2 n-1)$.

8. REASONING Let $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ be the Fibonacci sequence. Prove that $f_{1}+f_{2}+\cdots+f_{n}=f_{n+2}-1$ for all positive integers n.
