Prove Statements Using Mathematical Induction 405 a.2, a.6; G.3.D

GOAL Use mathematical induction to prove statements about all positive integers.

In Lesson 12.1, you saw the rule for the sum of the first *n* positive integers:

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

You can use *mathematical induction* to prove statements about positive integers.

KEY CONCEPT

For Your Notebook

Mathematical Induction

To show that a statement is true for all positive integers *n*, perform these steps.

Basis Step: Show that the statement is true for n = 1.

Inductive Step: Assume that the statement is true for n = k where k is any positive integer. Show that this implies the statement is true for n = k + 1.

EXAMPLE 1 Use mathematical induction

Use mathematical induction to prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Solution

Basis Step: Check that the formula works for n = 1.

$$1 \stackrel{?}{=} \frac{1(1+1)}{2} \longrightarrow 1 = 1 \checkmark$$

Inductive Step: Assume that $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.

Show that $1 + 2 + \dots + k + (k + 1) = \frac{(k + 1)[(k + 1) + 1]}{2}$.

 $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

Assume true for k.

 $1 + 2 + \dots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1)$ Add k + 1 to each side. $= \frac{k(k + 1) + 2(k + 1)}{2}$ Add. $= \frac{(k + 1)(k + 2)}{2}$ Factor out k + 1. $= \frac{(k + 1)[(k + 1) + 1]}{2}$ Rewrite k + 2 as (k + 1) + 1.

Therefore, $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all positive integers *n*.

UNDERSTAND INDUCTION

Extension

Use after Lesson 12.5

If you know from the basis step that a statement is true for n = 1, then the inductive step implies that it is true for n = 2, and therefore for n = 3, and so on for all positive integers n.