Extension
 Use afticer Lesson 12.5

Prove Statements Using

GOAL Use mathematical induction to prove statements about all positive integers.
In Lesson 12.1, you saw the rule for the sum of the first n positive integers:

$$
\sum_{i=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

You can use mathematical induction to prove statements about positive integers.

KEY CONCEPT
 For Your Notebook

Mathematical Induction

To show that a statement is true for all positive integers n, perform these steps.
Basis Step: Show that the statement is true for $n=1$.
Inductive Step: Assume that the statement is true for $n=k$ where k is any positive integer. Show that this implies the statement is true for $n=k+1$.

EXAMPLE 1 Use mathematical induction

UNDERSTAND

INDUCTION

If you know from the basis step that a statement is true for $n=1$, then the inductive step implies that it is true for $n=2$, and therefore for $n=3$, and so on for all positive integers n.

Use mathematical induction to prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Solution

Basis Step: Check that the formula works for $n=1$.

$$
1 \stackrel{?}{=} \frac{1(1+1)}{2} \Longrightarrow 1=1
$$

Inductive Step: Assume that $1+2+\cdots+k=\frac{k(k+1)}{2}$.
Show that $1+2+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}$.

$$
\begin{array}{rlrl}
1+2+\cdots+k & =\frac{k(k+1)}{2} & & \text { Assume true for } \boldsymbol{k} . \\
1+2+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) & & \text { Add } \boldsymbol{k}+\mathbf{1} \text { to each side. } \\
& =\frac{k(k+1)+2(k+1)}{2} & & \text { Add. } \\
& =\frac{(k+1)(k+2)}{2} & & \text { Factor out } \boldsymbol{k}+\mathbf{1} . \\
& =\frac{(k+1)[(k+1)+1]}{2} & \text { Rewrite } \boldsymbol{k}+\mathbf{2} \text { as }(\boldsymbol{k}+\mathbf{1})+\mathbf{1} .
\end{array}
$$

Therefore, $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

