PROBLEM SOLVING WORKSHOP IESSON 12.5

Using Alotrwative verilods

Another Way to Solve Example 4, page 829

MULTIPLE REPRESENTATIONS In Example 4 on page 829, you found the number that a real-life sequence approaches over time by using a calculator to evaluate the rule for the sequence. You can also solve this problem using a graph or an algebraic method.

Problem

MUSIC SERVICE An online music service initially has 50,000 annual members. Each year the music service loses 20% of its current members and adds 5000 new members. What happens to the number of members over time?

METHOD 1 Using a Graph A recursive rule for the number a_{n} of members at the beginning of the nth year is $a_{1}=50,000, a_{n}=0.8 a_{n-1}+5000$. One alternative method for finding the number this sequence approaches is to graph the sequence on a graphing calculator.

STEP 1 Set the calculator to sequence mode and dot mode.

nMin=1
$u(n)=.8 u(n-1)+5000$
u(nMin) $=\{50000\}$
$v(n)=$
$v(n M i n)=$
$w(n)=$
$w(n M i n)=$
$\begin{array}{lll}n \operatorname{Min}=1 & \mathrm{Xmin}=0 & \mathrm{Ymin}=15,000 \\ n \operatorname{Max}=100 & \mathrm{Xmax}=100 & \mathrm{Ymax}=35,000\end{array}$
PlotStart =1 \quad Xscl = $10 \quad$ Yscl $=5000$
PlotStep $=1$

STEP 3 Graph the sequence. Use the trace feature
to find the value that the sequence approaches as n becomes large. From the graph, you can see that the sequence approaches 25,000.

Over time, the number of members of the music service approaches 25,000.

