48. CHALLENGE You are saving money for retirement. You plan to withdraw $\$ 30,000$ at the beginning of each year for 20 years after you retire. Based on the type of investment you are making, you can expect to earn an annual return of 8% on your savings after you retire.
a. Let a_{n} be your balance n years after retiring. Write a recursive equation that shows how a_{n} is related to a_{n-1}.
b. Solve the equation from part (a) for a_{n-1}. Find a_{0}, the minimum amount of money you should have in your account when you retire. (Hint: Let $a_{20}=0$.)

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS
49. TAKS PRACTICE What is the solution of $\frac{1}{3}(8 x-5)=4 x+7$? TAKS Obj. 2
(A) $-\frac{13}{2}$
(B) 4
(C) 9
(D) 29

REVIEW

Lesson 1.3;
TAKS Workbook

REVIEW

TAKS Preparation p. 324;

TAKS Workbook
50. TAKS PRACTICE To the nearest tenth of a square foot, what is the area of a rectangular garden with a 25 -foot-long side and a 50 -foot diagonal? TAKS Obj. 8
(F) $892.5 \mathrm{ft}^{2}$
(G) $1082.5 \mathrm{ft}^{2}$
(H) $1107.5 \mathrm{ft}^{2}$
(J) $2165.0 \mathrm{ft}^{2}$

QUZ for Lessons 12.4-12.5

Find the sum of the infinite geometric series, if it exists. (p. 820)

1. $\sum_{n=1}^{\infty} 2\left(\frac{3}{7}\right)^{n-1}$
2. $\sum_{n=0}^{\infty} 4\left(-\frac{5}{6}\right)^{n}$
3. $\frac{3}{4}+\frac{15}{8}+\frac{75}{16}+\frac{375}{32}+\cdots$

Write the repeating decimal as a fraction in lowest terms. (p. 820)
4. 0.777. .
5. $0.393939 .$.
6. 123.123123...

Write the first five terms of the sequence. (p. 827)
7. $a_{1}=2$
$a_{n}=a_{n-1}+4$
8. $a_{0}=3$
$a_{n}=\left(a_{n-1}\right)^{2}-5$
9. $a_{1}=1, a_{2}=4$
$a_{n}=a_{n-1}-a_{n-2}$

Write a recursive rule for the sequence. The sequence may be arithmetic, geometric, or neither. (p. 827)
10. $5, \frac{17}{4}, \frac{7}{2}, \frac{11}{4}, 2, \ldots$
11. $2,6,12,72,864, \ldots$
12. $8,24,72,216,648, \ldots$

Find the first three iterates of the function for the given initial value. (p. 827)
13. $f(x)=-3 x-2, x_{0}=1$
14. $g(x)=4 x+1, x_{0}=2$
15. $f(x)=-2 x+3, x_{0}=-2$
16. $f(x)=5 x-7, x_{0}=-3$
17. $h(x)=x^{2}-6, x_{0}=-1$
18. $f(x)=3 x^{2}+2, x_{0}=0$
19. PENDULUMS A pendulum that is released to swing freely travels 25 inches on the first swing. On each successive swing, the pendulum travels 85% as far as the previous swing. What is the total distance the pendulum swings? (p. 820)

