EXAMPLES 2 and 3 on p. 828 for Exs. 13–23

WRITING RULES Write a recursive rule for the sequence. The sequence may be arithmetic, geometric, or neither.

13. 21, 14, 7, 0, -7,	14. 3, 12, 48, 192, 768,	15. 4, -12, 36, -108, 324,
16. 1, 8, 15, 22, 29,	17. 44, 11, $\frac{11}{4}$, $\frac{11}{16}$, $\frac{11}{64}$,	18. 1, 4, 5, 9, 14,
19. 54, 43, 32, 21, 10,	20. 3, 5, 15, 75, 1125,	21. 16, 9, 7, 2, 5,

ERROR ANALYSIS Describe and correct the error in writing a recursive rule for the sequence 5, 2, 3, -1, 4,

22.

EXAMPLE 5

on p. 830 for Exs. 24–33

ITERATING FUNCTIONS Find the first three iterates of the function for the given initial value. **24.** f(x) = 3x - 2, $x_0 = 2$ **25.** f(x) = 5x + 6, $x_0 = -2$ **26.** g(x) = -4x + 7, $x_0 = 1$ **(27)** $f(x) = \frac{1}{2}x - 3, x_0 = 2$ **28.** $f(x) = \frac{2}{3}x + 5, x_0 = 6$ **29.** $h(x) = x^2 - 4, x_0 = -3$ **30.** $f(x) = 2x^2 + 1$, $x_0 = -1$ **31.** $f(x) = x^2 - x + 2$, $x_0 = 1$ **32.** $g(x) = -3x^2 + 2x$, $x_0 = 2$ **33.** \oint TAKS REASONING What are the first three iterates x_1, x_2 , and x_3 of the function f(x) = -2x + 3 for an initial value of $x_0 = 2$? (A) -1, 1, 3 (B) 1, -5, 7 (C) -1, 5, -7 (D) 1, -1, -3 WRITING RULES Write a recursive rule for the sequence. **36.** 5, $5\sqrt{3}$, 15, $15\sqrt{3}$, 45, ... **35.** 1, 2, 12, 56, 272, . . . **34.** 3, 8, 17, 81, 370, . . . **37.** 2, 5, 11, 26, 59, . . . **39.** -3, -2, 5, -3, -2, ... **38.** 8, 4, 2, 2, 1, . . . **40. TAKS REASONING** Give an example of a sequence in which each term after the third term is a function of the three terms preceding it. Write a recursive rule for the sequence and find its first eight terms. **41. REASONING** *Explain* why there are not a function f and an initial value x_0 such that the function's first three iterates are $x_1 = 2$, $x_2 = 2$, and $x_3 = 8$. 42. CHALLENGE You can define a sequence using a piecewise rule. The following is an example of a piecewise-defined sequence. $a_{1} = 5, a_{n} = \begin{cases} \frac{a_{n-1}}{2}, \text{ if } a_{n-1} \text{ is even} \\ 3a_{n-1} + 3, \text{ if } a_{n-1} \text{ is odd} \end{cases}$ a. Write the first ten terms of the sequence. **b.** Choose three different positive integer values for a_1 (other than $a_1 = 5$). For each value of a_1 , find the first ten terms of the sequence. What conclusions can you make about the behavior of this sequence of integers? 12.5 Use Recursive Rules with Sequences and Functions

831