EXAMPLES
2 and 3
on p. 828
for Exs. 13-23

EXAMPLE 5 on p. 830 for Exs. 24-33

WRITING RULES Write a recursive rule for the sequence. The sequence may be arithmetic, geometric, or neither.
13. $21,14,7,0,-7, \ldots$
14. $3,12,48,192,768, \ldots$
(15.) $4,-12,36,-108,324, \ldots$
16. $1,8,15,22,29, \ldots$
17. $44,11, \frac{11}{4}, \frac{11}{16}, \frac{11}{64}, \ldots$
18. $1,4,5,9,14, \ldots$
19. $54,43,32,21,10, \ldots$
20. $3,5,15,75,1125, \ldots$
21. $16,9,7,2,5, \ldots$

ERROR ANALYSIS Describe and correct the error in writing a recursive rule for the sequence $5,2,3,-1,4, \ldots$.
22.

Beginning with the third term in the sequence, each term a_{n} equals $a_{n-2}-a_{n-1}$. So a recursive rule is given by:

$$
a_{n}=a_{n-2}-a_{n-1}
$$

23.

Beginning with the second term in the sequence, each term a_{n} is $a_{n-1}-3$. So a recursive rule is given by:

$$
a_{1}=5, a_{n}=a_{n-1}-3
$$

ITERATING FUNCTIONS Find the first three iterates of the function for the given initial value.
24. $f(x)=3 x-2, x_{0}=2$
25. $f(x)=5 x+6, x_{0}=-2$
26. $g(x)=-4 x+7, x_{0}=1$
27. $f(x)=\frac{1}{2} x-3, x_{0}=2$
28. $f(x)=\frac{2}{3} x+5, x_{0}=6$
29. $h(x)=x^{2}-4, x_{0}=-3$
30. $f(x)=2 x^{2}+1, x_{0}=-1$
31. $f(x)=x^{2}-x+2, x_{0}=1$
32. $g(x)=-3 x^{2}+2 x, x_{0}=2$
33. TAKS REASONING What are the first three iterates x_{1}, x_{2}, and x_{3} of the function $f(x)=-2 x+3$ for an initial value of $x_{0}=2$?
(A) $-1,1,3$
(B) $1,-5,7$
(C) $-1,5,-7$
(D) $1,-1,-3$

WRITING RULES Write a recursive rule for the sequence.
34. $3,8,17,81,370, \ldots$
35. $1,2,12,56,272, \ldots$
36. $5,5 \sqrt{3}, 15,15 \sqrt{3}, 45, \ldots$
37. $2,5,11,26,59, \ldots$
38. $8,4,2,2,1, \ldots$
39. $-3,-2,5,-3,-2, \ldots$
40. TAKS REASONING Give an example of a sequence in which each term after the third term is a function of the three terms preceding it. Write a recursive rule for the sequence and find its first eight terms.
41. REASONING Explain why there are not a function f and an initial value x_{0} such that the function's first three iterates are $x_{1}=2, x_{2}=2$, and $x_{3}=8$.
42. CHALLENGE You can define a sequence using a piecewise rule. The following is an example of a piecewise-defined sequence.

$$
a_{1}=5, a_{n}=\left\{\begin{array}{l}
\frac{a_{n-1}}{2}, \text { if } a_{n-1} \text { is even } \\
3 a_{n-1}+3, \text { if } a_{n-1} \text { is odd }
\end{array}\right.
$$

a. Write the first ten terms of the sequence.
b. Choose three different positive integer values for a_{1} (other than $\left.a_{1}=5\right)$. For each value of a_{1}, find the first ten terms of the sequence. What conclusions can you make about the behavior of this sequence of integers?

