- 1. WHAT IF? In Example 1, suppose that the rise of the ramp is changed to 12 inches without changing the run. What is the slope of the ramp?
- **2.** What is the slope of the line passing through the points (-4, 9) and (-8, 3)?

(A)
$$-\frac{2}{3}$$
 (B) $-\frac{1}{2}$ **(C)** $\frac{2}{3}$ **(D)** $\frac{3}{2}$

Find the slope of the line passing through the given points.

4. (-5, 1), (5, -4)**3.** (0, 3), (4, 8) 5. (-3, -2), (6, 1)**6.** (7, 3), (-1, 7)

KEY CONCEPT

For Your Notebook

Classification of Lines by Slope

The slope of a line indicates whether the line rises from left to right, falls from left to right, is horizontal, or is vertical.

A vertical line has "undefined slope" because for any two points, the slope formula's denominator becomes 0, and division

EXAMPLE 3 **Classify lines using slope**

Without graphing, tell whether the line through the given points rises, falls, is horizontal, or is vertical.

b. (-6, 0), (2, -4) **c.** (-1, 3), (5, 8)**a.** (-5, 1), (3, 1) **d.** (4, 6), (4, −1)

Solution

a. $m = \frac{1-1}{3-(-5)} = \frac{0}{8} = 0$ Because m = 0, the line is horizontal. **b.** $m = \frac{-4 - 0}{2 - (-6)} = \frac{-4}{8} = -\frac{1}{2}$ Because *m* < 0, the line falls. c. $m = \frac{8-3}{5-(-1)} = \frac{5}{6}$ Because m > 0, the line rises. **d.** $m = \frac{-1-6}{4-4} = \frac{-7}{0}$ Because *m* is undefined, the line is vertical.

GUIDED PRACTICE for Example 3

Without graphing, tell whether the line through the given points rises, falls, is horizontal, or is vertical.

7. (-4, 3), (2, -6)**8.** (7, 1), (7, -1) **9.** (3, -2), (5, -2)**10.** (5, 6), (1, -4)