EXAMPLE 2 Write recursive rules

Write a recursive rule for the sequence.

```
b. 16, 40, 100, 250, 625, . . .
```

Solution

a. The sequence is arithmetic with first term $a_1 = 3$ and common difference d = 13 - 3 = 10.

$$a_n = a_{n-1} + d$$

$$= a_{n-1} + 10$$
 Substitute 10 for *d*.

- So, a recursive rule for the sequence is $a_1 = 3$, $a_n = a_{n-1} + 10$.
- **b.** The sequence is geometric with first term $a_1 = 16$ and common ratio

General recursive equation for *a_n*

 $r = \frac{40}{16} = 2.5.$

 $a_n = \mathbf{r} \cdot a_{n-1}$ General recursive equation for a_n

- $= 2.5a_{n-1}$ Substitute 2.5 for *r*.
- So, a recursive rule for the sequence is $a_1 = 16$, $a_n = 2.5a_{n-1}$.

GUIDED PRACTICE for Examples 1 and 2

Write the first five terms of the sequence.

1. $a_1 = 3, a_n = a_{n-1} - 7$	2. $a_0 = 162, a_n = 0.5a_{n-1}$
3. $a_0 = 1, a_n = a_{n-1} + n$	4. $a_1 = 4, a_n = 2a_{n-1} - 1$
Write a recursive rule for the sequence.	
5. 2, 14, 98, 686, 4802,	6. 19, 13, 7, 1, −5,
7. 11, 22, 33, 44, 55,	8. 324, 108, 36, 12, 4,

RECURSIVE RULES FOR SPECIAL SEQUENCES For some sequences, it is difficult to write an explicit rule but relatively easy to write a recursive rule.

EXAMPLE 3 Write recursive rules for special sequences

Write a recursive rule for the sequence.

```
a. 1, 1, 2, 3, 5, . . .
```

b. 1, 1, 2, 6, 24, . . .

Solution

a. Beginning with the third term in the sequence, each term is the sum of the two previous terms.

So, a recursive rule is $a_1 = 1$, $a_2 = 1$, $a_n = a_{n-2} + a_{n-1}$.

- **b.** Denote the first term by $a_0 = 1$. Then note that $a_1 = 1 = 1 \cdot a_0$, $a_2 = 2 = 2 \cdot a_1$, $a_3 = 6 = 3 \cdot a_2$, and so on.
 - So, a recursive rule is $a_0 = 1$, $a_n = n \cdot a_{n-1}$.

AVOID ERRORS

.

A recursive *equation* for a sequence does not include the initial term. To write a recursive *rule* for a sequence, the initial term must be included.

The sequence in part (a) of Example 3 is called the *Fibonacci sequence*. The sequence in part (b) of Example 3 lists the factorial numbers you studied in Chapter 10.

NAME SEQUENCES