EXAMPLE 2 Write recursive rules

Write a recursive rule for the sequence.
a. $3,13,23,33,43, \ldots$
b. $16,40,100,250,625, \ldots$

Solution

a. The sequence is arithmetic with first term $a_{1}=3$ and common difference $d=13-3=10$.

$$
\begin{aligned}
a_{n} & =a_{n-1}+d & & \text { General recursive equation for } a_{n} \\
& =a_{n-1}+10 & & \text { Substitute } 10 \text { for } d .
\end{aligned}
$$

So, a recursive rule for the sequence is $a_{1}=3, a_{n}=a_{n-1}+10$.
b. The sequence is geometric with first term $a_{1}=16$ and common ratio $r=\frac{40}{16}=2.5$.

$$
\begin{aligned}
a_{n} & =r \cdot a_{n-1} & & \text { General recursive equation for } a_{n} \\
& =2.5 a_{n-1} & & \text { Substitute } 2.5 \text { for } r .
\end{aligned}
$$

So, a recursive rule for the sequence is $a_{1}=16, a_{n}=2.5 a_{n-1}$.

Guided Practice for Examples 1 and 2

Write the first five terms of the sequence.

1. $a_{1}=3, a_{n}=a_{n-1}-7$
2. $a_{0}=162, a_{n}=0.5 a_{n-1}$
3. $a_{0}=1, a_{n}=a_{n-1}+n$
4. $a_{1}=4, a_{n}=2 a_{n-1}-1$

Write a recursive rule for the sequence.

5. $2,14,98,686,4802, \ldots$
6. $19,13,7,1,-5, \ldots$
7. $11,22,33,44,55, \ldots$
8. $324,108,36,12,4, \ldots$

RECURSIVE RULES FOR SPECIAL SEQUENCES For some sequences, it is difficult to write an explicit rule but relatively easy to write a recursive rule.

EXAMPLE 3 Write recursive rules for special sequences

NAME SEQUENCES The sequence in part (a) of Example 3 is called the Fibonacci sequence. The sequence in part (b) of Example 3 lists the factorial numbers you studied in Chapter 10.

Write a recursive rule for the sequence.
a. $1,1,2,3,5, \ldots$
b. $1,1,2,6,24, \ldots$

Solution

a. Beginning with the third term in the sequence, each term is the sum of the two previous terms.
So, a recursive rule is $a_{1}=1, a_{2}=1, a_{n}=a_{n-2}+a_{n-1}$.
b. Denote the first term by $a_{0}=1$. Then note that $a_{1}=1=1 \cdot a_{0}$, $a_{2}=2=2 \cdot a_{1}, a_{3}=6=3 \cdot a_{2}$, and so on.

So, a recursive rule is $a_{0}=1, a_{n}=n \cdot a_{n-1}$.

