2.5 Use Recursive Rules with Sequences and Functions

a.1, a.5, a.6; P.4.A

> You used explicit rules for sequences. You will use recursive rules for sequences. So you can model evaporation from a pool, as in Ex. 44.

Key Vocabulary

- explicit rule
- recursive rule
- iteration

So far in this chapter you have worked with *explicit rules* for the *n*th term of a sequence, such as $a_n = 3n - 2$ and $a_n = 3(2)^n$. An **explicit rule** gives a_n as a function of the term's position number *n* in the sequence.

In this lesson you will learn another way to define a sequence—by a *recursive rule*. A **recursive rule** gives the beginning term or terms of a sequence and then a *recursive equation* that tells how a_n is related to one or more preceding terms.

EXAMPLE 1 Evaluate recursive rules

Write the first six terms of the sequence.

a. $a_0 = 1, a_n = a_{n-1} + 4$	b. $a_1 = 1, a_n = 3a_{n-1}$
Solution	
a. $a_0 = 1$	b. $a_1 = 1$
$a_1 = a_0 + 4 = 1 + 4 = 5$	$a_2 = 3a_1 = 3(1) = 3$
$a_2 = a_1 + 4 = 5 + 4 = 9$	$a_3 = 3a_2 = 3(3) = 9$
$a_3 = a_2 + 4 = 9 + 4 = 13$	$a_4 = 3a_3 = 3(9) = 27$
$a_4 = a_3 + 4 = 13 + 4 = 17$	$a_5 = 3a_4 = 3(27) = 81$
$a_5 = a_4 + 4 = 17 + 4 = 21$	$a_6 = 3a_5 = 3(81) = 243$

ARITHMETIC AND GEOMETRIC SEQUENCES In part (a) of Example 1, observe that the *differences* of consecutive terms of the sequence are constant, so the sequence is arithmetic. In part (b), the *ratios* of consecutive terms are constant, so the sequence is geometric. In general, rules for arithmetic and geometric sequences can be written recursively as follows.

