12.5 a.1, a.5, a.6; P.4.A
 Use Recursive Rules with Sequences and Functions

Before Why?

You used explicit rules for sequences.
You will use recursive rules for sequences.
So you can model evaporation from a pool, as in Ex. 44.

Key Vocabulary

- explicit rule
- recursive rule
- iteration

So far in this chapter you have worked with explicit rules for the nth term of a sequence, such as $a_{n}=3 n-2$ and $a_{n}=3(2)^{n}$. An explicit rule gives a_{n} as a function of the term's position number n in the sequence.

In this lesson you will learn another way to define a sequence-by a recursive rule. A recursive rule gives the beginning term or terms of a sequence and then a recursive equation that tells how a_{n} is related to one or more preceding terms.

EXAMPLE 1 Evaluate recursive rules

Write the first six terms of the sequence.
a. $a_{0}=1, a_{n}=a_{n-1}+4$
b. $a_{1}=1, a_{n}=3 a_{n-1}$

Solution

$$
\text { a. } \begin{aligned}
a_{0} & =1 \\
a_{1} & =a_{0}+4=1+4=5 \\
a_{2} & =a_{1}+4=5+4=9 \\
a_{3} & =a_{2}+4=9+4=13 \\
a_{4} & =a_{3}+4=13+4=17 \\
a_{5} & =a_{4}+4=17+4=21
\end{aligned}
$$

$$
a_{2}=3 a_{1}=3(1)=3
$$

$$
a_{3}=3 a_{2}=3(3)=9
$$

$$
a_{4}=3 a_{3}=3(9)=27
$$

$$
a_{5}=3 a_{4}=3(27)=81
$$

$$
a_{6}=3 a_{5}=3(81)=243
$$

ARITHMETIC AND GEOMETRIC SEQUENCES In part (a) of Example 1, observe that the differences of consecutive terms of the sequence are constant, so the sequence is arithmetic. In part (b), the ratios of consecutive terms are constant, so the sequence is geometric. In general, rules for arithmetic and geometric sequences can be written recursively as follows.

KEY CONCEPT

Recursive Equations for Arithmetic and Geometric Sequences

Arithmetic Sequence

$a_{n}=a_{n-1}+d$ where d is the common difference

Geometric Sequence

$$
a_{n}=r \cdot a_{n-1} \text { where } r \text { is the common ratio }
$$

