EXAMPLE 4 Use an infinite series as a model

PENDULUMS A pendulum that is released to swing freely travels 18 inches on the first swing. On each successive swing, the pendulum travels 80% of the distance of the previous swing. What is the total distance the pendulum swings?

Solution

The total distance traveled by the pendulum is:

$$
\begin{aligned}
d & =18+18(0.8)+18(0.8)^{2}+18(0.8)^{3}+\cdots \\
& =\frac{a_{1}}{1-r} \quad \text { Write formula for sum. } \\
& =\frac{18}{1-0.8} \quad \text { Substitute } 18 \text { for } a_{1} \text { and } 0.8 \text { for } r . \\
& =90
\end{aligned} \quad \text { Simplify. }
$$

- The pendulum travels a total distance of 90 inches, or 7.5 feet.

EXAMPLE 5 Write a repeating decimal as a fraction

Write 0.242424. . as a fraction in lowest terms.

$$
\begin{array}{rlrl}
0.242424 \ldots & =24(0.01)+24(0.01)^{2}+24(0.01)^{3}+\cdots \\
& =\frac{a_{1}}{1-r} & \text { Write formula for sum. } \\
& =\frac{24(0.01)}{1-0.01} & \text { Substitute 24(0.01) for } a_{1} \text { and } 0.01 \text { for } r . \\
& =\frac{0.24}{0.99} & \text { Simplify. } \\
& =\frac{24}{99} & \text { Write as a quotient of integers. } \\
& =\frac{8}{33} & \text { Reduce fraction to lowest terms. }
\end{array}
$$

- The repeating decimal $0.242424 .$. is $\frac{8}{33}$ as a fraction.

Guided Practice for Examples 4 and 5

5. WHAT IF? In Example 4, suppose the pendulum travels 10 inches on its first swing. What is the total distance the pendulum swings?

Write the repeating decimal as a fraction in lowest terms.

6. 0.555 . .
7. $0.727272 .$.
8. 0.131313 . .
