KEY CONCEPT

For Your Notebook

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_1 and common ratio r is given by

$$S = \frac{a_1}{1 - r}$$

provided |r| < 1. If $|r| \ge 1$, the series has no sum.

EXAMPLE 2 Find sums of infinite geometric series

Find the sum of the infinite geometric series.

a.
$$\sum_{i=1}^{\infty} 5(0.8)^{i-1}$$
 b. $1 - \frac{3}{4} + \frac{9}{16} - \frac{27}{64} + \cdots$

Solution

a. For this series, $a_1 = 5$ and r = 0.8. $S = \frac{a_1}{1 - r} = \frac{5}{1 - 0.8} = 25$

For this series,
$$a_1 = 1$$
 and $r = -\frac{3}{4}$.
 $S = \frac{a_1}{1-r} = \frac{1}{1-(-\frac{3}{4})} = \frac{4}{7}$

TAKS EXAMPLE 3

TAKS PRACTICE: Multiple Choice

AVOID ERRORS

If you substitute 1 for a_1 and -4 for r in the formula $S = \frac{a_1}{1 - r}$, you get an answer of $S = \frac{1}{5}$ for the sum. However, this answer is not correct because the sum formula does not apply when $|r| \ge 1$. What is the sum of the infinite geometric series $1 - 4 + 16 - 64 + \cdots$? (A) $\frac{1}{5}$ (B) $\frac{4}{3}$ (C) 4 (D) Does not exist

b.

Solution

You know that $a_1 = 1$ and $a_2 = -4$. So, $r = \frac{-4}{1} = -4$.

Because $|-4| \ge 1$, the sum does not exist.

▶ The correct answer is D. ▲ ⑧ ⓒ ●

GUIDED PRACTICE for Examples 1, 2, and 3

1. Consider the series $\frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \frac{16}{625} + \frac{32}{3125} + \cdots$. Find and graph the partial sums S_n for n = 1, 2, 3, 4, and 5. Then describe what happens to S_n as n increases.

Find the sum of the infinite geometric series, if it exists.

2.
$$\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^{n-1}$$
 3. $\sum_{n=1}^{\infty} 3\left(\frac{5}{4}\right)^{n-1}$ **4.** $3 + \frac{3}{4} + \frac{3}{16} + \frac{3}{64} + \cdots$