KEY CONCEPT

The Sum of an Infinite Geometric Series

The sum of an infinite geometric series with first term a_{1} and common ratio r is given by

$$
S=\frac{a_{1}}{1-r}
$$

provided $|r|<1$. If $|r| \geq 1$, the series has no sum.

EXAMPLE 2 Find sums of infinite geometric series

Find the sum of the infinite geometric series.
a. $\sum_{i=1}^{\infty} 5(0.8)^{i-1}$
b. $1-\frac{3}{4}+\frac{9}{16}-\frac{27}{64}+\cdots$

Solution

a. For this series, $a_{1}=5$ and $r=0.8$.
$S=\frac{a_{1}}{1-r}=\frac{5}{1-0.8}=25$
b. For this series, $a_{1}=1$ and $r=-\frac{3}{4}$. $S=\frac{a_{1}}{1-r}=\frac{1}{1-\left(-\frac{3}{4}\right)}=\frac{4}{7}$

AVOID ERRORS

If you substitute 1 for a_{1} and -4 for r in the formula $S=\frac{a_{1}}{1-r}$, you get an answer of $S=\frac{1}{5}$ for the sum. However, this answer is not correct because the sum formula does not apply when $|r| \geq 1$.

EXAMPLE 3 TAKS PRACTICE: Multiple Choice

What is the sum of the infinite geometric series $1-4+16-64+\cdots$?
(A) $\frac{1}{5}$
(B) $\frac{4}{3}$
(C) 4
(D) Does not exist

Solution

You know that $a_{1}=1$ and $a_{2}=-4$. So, $r=\frac{-4}{1}=-4$.
Because $|-4| \geq 1$, the sum does not exist.

- The correct answer is D. (A) (B) (C)

Guided Practice

1. Consider the series $\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\frac{16}{625}+\frac{32}{3125}+\cdots$. Find and graph the partial sums S_{n} for $n=1,2,3,4$, and 5 . Then describe what happens to S_{n} as n increases.

Find the sum of the infinite geometric series, if it exists.
2. $\sum_{n=1}^{\infty}\left(-\frac{1}{2}\right)^{n-1}$
3. $\sum_{n=1}^{\infty} 3\left(\frac{5}{4}\right)^{n-1}$
4. $3+\frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\cdots$

