

Key Vocabulary • partial sum The sum S_n of the first *n* terms of an infinite series is called a **partial sum**. The partial sums of an infinite geometric series may approach a limiting value.

EXAMPLE 1 Find partial sums

Consider the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots$. Find and graph the partial sums S_n for n = 1, 2, 3, 4, and 5. Then describe what happens to S_n as *n* increases.

Solution

$S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \approx 0.88$	-0.4
$S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \approx 0.94$	-0.2-
$S_5 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \approx 0.97$	1 2 3 4 5 n

From the graph, S_n appears to approach 1 as *n* increases.

Animated Algebra at classzone.com

SUMS OF INFINITE SERIES In Example 1, you can understand why S_n approaches 1 as *n* increases by considering the rule for S_n :

$$S_n = a_1 \left(\frac{1-r^n}{1-r}\right) = \frac{1}{2} \left(\frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}}\right) = 1 - \left(\frac{1}{2}\right)^n$$

As *n* increases, $\left(\frac{1}{2}\right)^n$ approaches 0, so S_n approaches 1. Therefore, 1 is defined to be the sum of the infinite geometric series in Example 1. More generally, as *n* increases for *any* infinite geometric series with common ratio *r* between -1 and 1, the value of $S_n = a_1 \left(\frac{1-r^n}{1-r}\right) \approx a_1 \left(\frac{1-0}{1-r}\right) = \frac{a_1}{1-r}$.