Find Sums of Infinite

¢ ¥ Geometric Series
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You found the sums of finite geometric series.
You will find the sums of infinite geometric series.

So you can analyze a fractal, as in Ex. 42.

Key Vocabulary The sum S, of the first n terms of an infinite series is called a partial sum. The
e partial sum partial sums of an infinite geometric series may approach a limiting value.
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Consider the infinite geometric series 2 + 1 + 8 + 16 + 32 + :--.Find and
graph the partial sums S, for n = 1, 2, 3, 4, and 5. Then describe what happens
to S, as n increases.
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From the graph, S, appears to approach 1 as n increases.
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SUMS OF INFINITE SERIES In Example 1, you can understand why S, approaches 1
as n increases by considering the rule for S, :
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As nincreases, (f) approaches 0, so S, approaches 1. Therefore, 1 is defined to

be the sum of the infinite geometric series in Example 1. More generally, as n
increases for any infinite geometric series with common ratio r between —1 and
1—r")%a(1—0): a
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1, the value of S, = al(
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