12.4
 a.2, 2A.2.A;
 P.4.B, P.4.D
 Find Sums of Infinite Geometric Series

Before

You found the sums of finite geometric series. You will find the sums of infinite geometric series. So you can analyze a fractal, as in Ex. 42.

Key Vocabulary - partial sum

The sum S_{n} of the first n terms of an infinite series is called a partial sum. The partial sums of an infinite geometric series may approach a limiting value.

EXAMPLE 1 Find partial sums

Consider the infinite geometric series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots$. Find and graph the partial sums S_{n} for $n=1,2,3,4$, and 5 . Then describe what happens to S_{n} as n increases.

Solution

$$
\begin{aligned}
& S_{1}=\frac{1}{2}=0.5 \\
& S_{2}=\frac{1}{2}+\frac{1}{4}=0.75 \\
& S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \approx 0.88 \\
& S_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \approx 0.94 \\
& S_{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32} \approx 0.97
\end{aligned}
$$

From the graph, S_{n} appears to approach 1 as n increases.

AnimatedAlgebra at classzone.com

SUMS OF INFINITE SERIES In Example 1, you can understand why S_{n} approaches 1 as n increases by considering the rule for S_{n} :

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)=\frac{1}{2}\left(\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}\right)=1-\left(\frac{1}{2}\right)^{n}
$$

As n increases, $\left(\frac{1}{2}\right)^{n}$ approaches 0 , so S_{n} approaches 1 . Therefore, 1 is defined to be the sum of the infinite geometric series in Example 1. More generally, as n increases for any infinite geometric series with common ratio r between -1 and
1, the value of $S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right) \approx a_{1}\left(\frac{1-0}{1-r}\right)=\frac{a_{1}}{1-r}$.

