2.2 Find Slope and Rate of Change

You graphed linear functions. You will find slopes of lines and rates of change. So you can model growth rates, as in Ex. 46.

Key Vocabulary

- slope
- parallel
- perpendicular
- rate of change
- \bullet reciprocal, p.~4

EXAMPLE 1 Find slope in real life

SKATEBOARDING A skateboard ramp has a rise of 15 inches and a run of 54 inches. What is its slope?

Solution

EXAMPLE 2

(A) $-\frac{5}{4}$

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{15}{54} = \frac{5}{18}$$

The slope of the ramp is $\frac{5}{18}$.

TAKS PRACTICE: Multiple Choice

B $-\frac{4}{5}$

What is the slope of the line passing through the points (-2, 1) and (3, 5)?

 $\bigcirc \frac{4}{5}$

Solution

Let
$$(x_1, y_1) = (-2, 1)$$
 and $(x_2, y_2) = (3, 5)$.
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{3 - (-2)} = \frac{4}{5}$
The correct answer is C. (A) (B) (C) (D)

AVOID ERRORS When calculating slope, be sure to subtract the *x*- and *y*-coordinates in a consistent order.