2.2 Find Slope and Rate of Change
 TEKS
 a.1, a.4, a. 5

Before	You graphed linear functions.
Now	You will find slopes of lines and rates of change.
Why?	So you can model growth rates, as in Ex. 46.

Key Vocabulary

- slope
- parallel
- perpendicular
- rate of change
- reciprocal, p. 4

KEY CONCEPT

Slope of a Line

Words

The slope m of a nonvertical line is the ratio of vertical change (the rise) to horizontal change (the run).

Algebra
$\underset{\uparrow}{\uparrow} \underset{\text { slope }}{m} \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$

Graph

EXAMPLE 1 Find slope in real life

SKATEBOARDING A skateboard ramp has a rise of 15 inches and a run of 54 inches. What is its slope?

run $=54$ in.

Solution

slope $=\frac{\text { rise }}{\text { run }}=\frac{15}{54}=\frac{5}{18}$

- The slope of the ramp is $\frac{5}{18}$.

AVOID ERRORS

When calculating slope, be sure to subtract the x - and y-coordinates in a consistent order.

EXAMPLE 2 TAKS PRACTICE: Multiple Choice

What is the slope of the line passing through the points $(-2,1)$ and $(3,5)$?
(A) $-\frac{5}{4}$
(B) $-\frac{4}{5}$
(C) $\frac{4}{5}$
(D) $\frac{5}{4}$

Solution

Let $\left(x_{1}, y_{1}\right)=(-2,1)$ and $\left(x_{2}, y_{2}\right)=(3,5)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{3-(-2)}=\frac{4}{5}
$$

- The correct answer is C. (A) (B) (C) (D)

