EXAMPLE 5 Find the sum of a geometric series

Find the sum of the geometric series $\sum_{i=1}^{16} 4(3)^{i-1}$.

$$
\begin{aligned}
a_{1} & =4(3)^{1-1}=4 & & \text { Identify first term. } \\
r & =3 & & \text { Identify common ratio. } \\
S_{16} & =a_{1}\left(\frac{1-r^{16}}{1-r}\right) & & \text { Write rule for } \boldsymbol{S}_{16^{\circ}} \\
& =4\left(\frac{1-3^{16}}{1-3}\right) & & \text { Substitute } 4 \text { for } a_{1} \text { and } 3 \text { for } r . \\
& =86,093,440 & & \text { Simplify. }
\end{aligned}
$$

- The sum of the series is $86,093,440$.

EXAMPLE 6 Use a geometric sequence and series in real life

MOVIE REVENUE In 1990, the total box office revenue at U.S. movie theaters was about $\$ 5.02$ billion. From 1990 through 2003, the total box office revenue increased by about 5.9% per year.
a. Write a rule for the total box office revenue a_{n} (in billions of dollars) in terms of the year. Let $n=1$ represent 1990.
b. What was the total box office revenue at U.S. movie theaters for the entire period 1990-2003?

Solution

a. Because the total box office revenue increased by the same percent each year, the total revenues from year to year form a geometric sequence. Use $a_{1}=5.02$ and $r=1+0.059=1.059$ to write a rule for the sequence.

$$
a_{n}=5.02(1.059)^{n-1} \quad \text { Write a rule for } a_{n}
$$

b. There are 14 years in the period 1990-2003, so find S_{14}.

$$
S_{14}=a_{1}\left(\frac{1-r^{14}}{1-r}\right)=5.02\left(\frac{1-(1.059)^{14}}{1-1.059}\right) \approx 105
$$

- The total movie box office revenue for the period 1990-2003 was about $\$ 105$ billion.

Guided Practic

7. Find the sum of the geometric series $\sum_{i=1}^{8} 6(-2)^{i-1}$.
8. MOVIE REVENUE Use the rule in part (a) of Example 6 to estimate the total box office revenue at U.S. movie theaters in 2000.
