EXAMPLE 4 Write a rule given two terms

Two terms of a geometric sequence are $a_{3}=-48$ and $a_{6}=3072$. Find a rule for the nth term.

Solution

STEP 1 Write a system of equations using $a_{n}=a_{1} r^{n-1}$ and substituting 3 for n (Equation 1) and then 6 for n (Equation 2).

$$
\begin{array}{ll}
a_{3}=a_{1} r^{3-1} & \Rightarrow-48=a_{1} r^{2} \\
a_{6}=a_{1} r^{6-1} & \text { Equation 1 } \\
3072=a_{1} r^{5} & \text { Equation 2 }
\end{array}
$$

STEP 2 Solve the system. $\frac{-48}{r^{2}}=a_{1} \quad$ Solve Equation 1 for a_{1}.

$$
3072=\frac{-48}{r^{2}}\left(r^{5}\right) \quad \text { Substitute for } \boldsymbol{a}_{1} \text { in Equation } 2 .
$$

$$
3072=-48 r^{3} \quad \text { Simplify }
$$

$$
-4=r \quad \text { Solve for } r .
$$

$$
-48=a_{1}(-4)^{2} \quad \text { Substitute for } r \text { in Equation } 1 .
$$

$$
-3=a_{1} \quad \text { Solve for } a_{1}
$$

STEP 3 Find a rule for a_{n}.

$$
a_{n}=a_{1} r^{n-1} \quad \text { Write general rule. }
$$

$$
a_{n}=-3(-4)^{n-1} \quad \text { Substitute for } a_{1} \text { and } r .
$$

Guided Practice

Write a rule for the nth term of the geometric sequence. Then find $\boldsymbol{a}_{\mathbf{8}}$.
4. $3,15,75,375, \ldots$
5. $a_{6}=-96, r=2$
6. $a_{2}=-12, a_{4}=-3$

GEOMETRIC SERIES The expression formed by adding the terms of a geometric sequence is called a geometric series. The sum of the first n terms of a geometric series is denoted by S_{n}. You can develop a rule for S_{n} as follows.

$$
\begin{aligned}
S_{n} & =a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1} \\
-r S_{n} & =-a_{1} r-a_{1} r^{2}-a_{1} r^{3}-\cdots-a_{1} r^{n-1}-a_{1} r^{n} \\
\hline S_{n}(1-r) & =a_{1}+0+0+0+\cdots+0-a_{1} r^{n}
\end{aligned}
$$

So, $S_{n}(1-r)=a_{1}\left(1-r^{n}\right)$. If $r \neq 1$, you can divide each side of this equation by $1-r$ to obtain the following rule for S_{n}.

KEY CONCEPT

For Your Notebook

The Sum of a Finite Geometric Series

The sum of the first n terms of a geometric series with common ratio $r \neq 1$ is:

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

