EXAMPLE 4 Write a rule given two terms

Two terms of a geometric sequence are $a_3 = -48$ and $a_6 = 3072$. Find a rule for the *n*th term.

Solution

STEP 1 Write a system of equations using $a_n = a_1 r^{n-1}$ and substituting 3 for *n* (Equation 1) and then 6 for *n* (Equation 2). $a_3 = a_1 r^{3-1}$ $-48 = a_1 r^2$ Equation 1

 $a_{6} = a_{1}r^{6-1} \longrightarrow 3072 = a_{1}r^{5}$ Equation 2 STEP 2 Solve the system. $\frac{-48}{r^{2}} = a_{1}$ Solve Equation 1 for a_{1} . $3072 = \frac{-48}{r^{2}}(r^{5})$ Substitute for a_{1} in Equation 2. $3072 = -48r^{3}$ Simplify. -4 = rSolve for r. $-48 = a_{1}(-4)^{2}$ Substitute for r in Equation 1. $-3 = a_{1}$ Solve for a_{1} . STEP 3 Find a rule for a_{n} . $a_{n} = a_{1}r^{n-1}$ Write general rule. $a_{n} = -3(-4)^{n-1}$ Substitute for a_{1} and r.

GUIDED PRACTICE for Examples 2, 3, and 4

Write a rule for the *n*th term of the geometric sequence. Then find a_8 .

4. 3, 15, 75, 375, ... **5.** $a_6 = -96$, r = 2 **6.** $a_2 = -12$, $a_4 = -3$

GEOMETRIC SERIES The expression formed by adding the terms of a geometric sequence is called a **geometric series**. The sum of the first *n* terms of a geometric series is denoted by S_n . You can develop a rule for S_n as follows.

$$S_n = a_1 + a_1 r + a_1 r^2 + a_1 r^3 + \dots + a_1 r^{n-1}$$

$$-rS_n = -a_1 r - a_1 r^2 - a_1 r^3 - \dots - a_1 r^{n-1} - a_1 r^n$$

$$S_n(1-r) = a_1 + 0 + 0 + 0 + \dots + 0 - a_1 r^n$$

So, $S_n(1-r) = a_1(1-r^n)$. If $r \neq 1$, you can divide each side of this equation by 1-r to obtain the following rule for S_n .

KEY CONCEPT

For Your Notebook

The Sum of a Finite Geometric Series

The sum of the first *n* terms of a geometric series with common ratio $r \neq 1$ is:

 $S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$