12.3
 a.4, 2A.2.A;
 P.4.A, P.4.B

Before You studied arithmetic sequences and series.
Now
Why? You will study geometric sequences and series. So you can solve problems about sports tournaments, as in Ex. 58.

Key Vocabulary - geometric sequence

- common ratio - geometric series

In a geometric sequence, the ratio of any term to the previous term is constant. This constant ratio is called the common ratio and is denoted by r.

EXAMPLE 1 Identify geometric sequences

Tell whether the sequence is geometric.
a. $4,10,18,28,40, \ldots$
b. $625,125,25,5,1, \ldots$

Solution

To decide whether a sequence is geometric, find the ratios of consecutive terms.
a. $\frac{a_{2}}{a_{1}}=\frac{10}{4}=\frac{5}{2} \quad \frac{a_{3}}{a_{2}}=\frac{18}{10}=\frac{9}{5} \quad \frac{a_{4}}{a_{3}}=\frac{28}{18}=\frac{14}{9} \quad \frac{a_{5}}{a_{4}}=\frac{40}{28}=\frac{10}{7}$

- The ratios are different, so the sequence is not geometric.
b. $\frac{a_{2}}{a_{1}}=\frac{125}{625}=\frac{1}{5} \quad \frac{a_{3}}{a_{2}}=\frac{25}{125}=\frac{1}{5} \quad \frac{a_{4}}{a_{3}}=\frac{5}{25}=\frac{1}{5} \quad \frac{a_{5}}{a_{4}}=\frac{1}{5}$

Each ratio is $\frac{1}{5}$, so the sequence is geometric.

Guided Practice for Example 1

Tell whether the sequence is geometric. Explain why or why not.

1. $81,27,9,3,1, \ldots$
2. $1,2,6,24,120, \ldots$
3. $-4,8,-16,32,-64, \ldots$

KEY CONCEPT

For Your Notebook

Rule for a Geometric Sequence

Algebra The nth term of a geometric sequence with first term a_{1} and common ratio r is given by:

$$
a_{n}=a_{1} r^{n-1}
$$

Example
The nth term of a geometric sequence with a first term of 3 and common ratio 2 is given by:

$$
a_{n}=3(2)^{n-1}
$$

