
12.2 EXERCISES

HOMEWORK

SKILL PRACTICE

- 1. VOCABULARY Copy and complete: The constant difference between consecutive terms of an arithmetic sequence is called the ? .
- Explain the difference between an arithmetic sequence and an 2. WRITING arithmetic series.

IDENTIFYING ARITHMETIC SEQUENCES Tell whether the sequence is arithmetic. Explain why or why not.

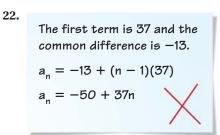
EXAMPLE 1 on p. 802 for Exs. 3-11

3. 1, -2, -5, -8, -11,	4. 16, 14, 11, 6, 3,	5. 5, 14, 23, 32, 41,
6. -10, -7, -5, -2, 0,	7. 0.5, 1, 1.5, 2, 2.5,	8. 20, 10, 5, 2.5, 1.25,
9. $\frac{7}{4}, \frac{5}{4}, \frac{3}{4}, -\frac{3}{4}, -\frac{5}{4}, \ldots$	10. $\frac{1}{7}, \frac{2}{7}, \frac{4}{7}, \frac{8}{7}, \frac{16}{7}, \dots$	11. $-\frac{5}{2}$, -1 , $\frac{1}{2}$, 2, $\frac{7}{2}$,

EXAMPLE 2 on p. 803

for Exs. 12-22

EXAMPLE 3


on p. 803 for Exs. 23-29

WRITING RULES Write a rule for the <i>n</i> th term of the arithmetic sequence. Then find a_{20} .				
12. 1, 4, 7, 10, 13,	13. 5, 11, 17, 23, 29,	14. 8, 21, 34, 47, 60,		
15. -3, -1, 1, 3, 5,	16. 6, 2, -2, -6, -10,	17. 25, 14, 3, -8, -19,		
18. $0, \frac{2}{3}, \frac{4}{3}, 2, \frac{8}{3}, \ldots$	19. 2, $\frac{5}{3}$, $\frac{4}{3}$, 1, $\frac{2}{3}$,	20. 1.5, 3.6, 5.7, 7.8, 9.9,		

ERROR ANALYSIS Describe and correct the error in writing the rule for the *n*th term of the arithmetic sequence $37, 24, 11, -2, -15, \ldots$

21.

Use $a_1 = 37$ and d = -13. $a_n = a_1 + nd$ $a_n = 37 + n(-13)$ a_n = 37 - 13n

WRITING RULES Write a rule for the *n*th term of the arithmetic sequence. Then graph the first six terms of the sequence.

23. $a_{16} = 52, d = 5$	24. $a_6 = -16, d = 9$	25. $a_4 = 96$, $d = -14$
26. $a_{12} = -3, d = -7$	27. $a_{10} = 30, d = \frac{7}{2}$	28. $a_{11} = \frac{1}{2}, d = -\frac{1}{2}$

29. taks reasoning For a certain arithmetic sequence, $a_{30} = 57$ and d = 4. What is a rule for the *n*th term of the sequence?

(A) $a_n = -63 - 4n$ **B** $a_n = -59 - 4n$ **D** $a_n = -59 + 4n$ (c) $a_n = -63 + 4n$