ExAMPLE 5 TAKS PRACTICE: Multiple Choice

What is the sum of the arithmetic series $\sum_{i=1}^{20}(4+3 i) ?$
(A) 64
(B) 71
(C) 710
(D) 1420

CLASSIFY SERIES You can verify that the series in Example 5 is arithmetic by evaluating $4+3 i$ for the first few values of the index $i$. The resulting terms are $7,10,13,16$, which have a common difference of 3.

## Solution

$$
\begin{aligned}
a_{1} & =4+3(1)=7 & & \text { Identify first term. } \\
a_{20} & =4+3(20)=64 & & \text { Identify last term. } \\
S_{20} & =20\left(\frac{7+64}{2}\right) & & \text { Write rule for } S_{20^{\prime}} \text { substituting } 7 \text { for } a_{1} \text { and } 64 \text { for } a_{20^{\circ}} \\
& =710 & & \text { Simplify. }
\end{aligned}
$$

- The correct answer is C. (A) (B) (D)


## EXAMPLE 6 Use an arithmetic sequence and series in real life

HOUSE OF CARDS You are making a house of cards similar to the one shown.
a. Write a rule for the number of cards in the $n$th row if the top row is row 1.
b. What is the total number of cards if the house of cards has 14 rows?


## Solution

a. Starting with the top row, the numbers of cards in the rows are 3, 6, 9, $12, \ldots$. These numbers form an arithmetic sequence with a first term of 3 and a common difference of 3 . So, a rule for the sequence is:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d & & \text { Write general rule. } \\
& =3+(n-1) 3 & & \text { Substitute } 3 \text { for } a_{1} \text { and } 3 \text { for } d . \\
& =3 n & & \text { Simplify. }
\end{aligned}
$$

b. Find the sum of an arithmetic series with first term $a_{1}=3$ and last term $a_{14}=3(14)=42$.

$$
\text { Total number of cards }=S_{14}=14\left(\frac{a_{1}+a_{14}}{2}\right)=14\left(\frac{3+42}{2}\right)=315
$$

AnimatedAlgebra at classzone.com

## GUIDED Practice for Examples 5 and 6

5. Find the sum of the arithmetic series $\sum_{i=1}^{12}(2+7 i)$.
6. WHAT IF? In Example 6, what is the total number of cards if the house of cards has 8 rows?
